These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 25397777)
41. Humidity Sensing Behavior of Endohedral Li-Doped and Undoped SWCNT/SDBS Composite Films. Müller C; Al-Hamry A; Kanoun O; Rahaman M; Zahn DRT; Matsubara EY; Rosolen JM Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621288 [TBL] [Abstract][Full Text] [Related]
42. High levels of electrochemical doping of carbon nanotubes: evidence for a transition from double-layer charging to intercalation and functionalization. Rafailov PM; Thomsen C; Dettlaff-Weglikowska U; Roth S J Phys Chem B; 2008 May; 112(17):5368-73. PubMed ID: 18393479 [TBL] [Abstract][Full Text] [Related]
43. Rotating cell for in situ Raman spectroelectrochemical studies of photosensitive redox systems. Kavan L; Janda P; Krause M; Ziegs F; Dunsch L Anal Chem; 2009 Mar; 81(5):2017-21. PubMed ID: 19192964 [TBL] [Abstract][Full Text] [Related]
44. A computational modeling of Raman radial breathing-like mode frequencies of fullerene encapsulated inside single-walled carbon nanotubes. Ghavanloo E; Fazelzadeh SA; Rafii-Tabar H J Mol Model; 2017 Feb; 23(2):48. PubMed ID: 28154985 [TBL] [Abstract][Full Text] [Related]
45. Charge transfer structure-reactivity dependence of fullerene-single-walled carbon nanotube heterojunctions. Hilmer AJ; Tvrdy K; Zhang J; Strano MS J Am Chem Soc; 2013 Aug; 135(32):11901-10. PubMed ID: 23848070 [TBL] [Abstract][Full Text] [Related]
46. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li(+) conductivity of Li7La3Zr2O12 lithium garnet. Dhivya L; Murugan R ACS Appl Mater Interfaces; 2014 Oct; 6(20):17606-15. PubMed ID: 25265573 [TBL] [Abstract][Full Text] [Related]
47. Modified coin cells for in situ Raman spectroelectrochemical measurements of Li(x)V2O5 for lithium rechargeable batteries. Burba CM; Frech R Appl Spectrosc; 2006 May; 60(5):490-3. PubMed ID: 16756699 [TBL] [Abstract][Full Text] [Related]
48. Raman spectroscopy of strained single-walled carbon nanotubes. Liu Z; Zhang J; Gao B Chem Commun (Camb); 2009 Dec; (45):6902-18. PubMed ID: 19904346 [TBL] [Abstract][Full Text] [Related]
49. Interaction between single-wall carbon nanotubes and encapsulated C60 probed by resonance Raman spectroscopy. Joung SK; Okazaki T; Okada S; Iijima S Phys Chem Chem Phys; 2010 Jul; 12(28):8118-22. PubMed ID: 20526513 [TBL] [Abstract][Full Text] [Related]
50. Li+ and Li interactions with carbon nanocage structures. Peköz R; Erkoç S J Nanosci Nanotechnol; 2008 Feb; 8(2):675-8. PubMed ID: 18464390 [TBL] [Abstract][Full Text] [Related]
51. Type- and species-selective air etching of single-walled carbon nanotubes tracked with in situ Raman spectroscopy. Li-Pook-Than A; Lefebvre J; Finnie P ACS Nano; 2013 Aug; 7(8):6507-21. PubMed ID: 23837555 [TBL] [Abstract][Full Text] [Related]
52. Piperidine induced polarity conversion in single-walled carbon nanotube field effect transistors. Raj K; Zhang Q; Liu C; Park MB Nanotechnology; 2011 Jun; 22(24):245306. PubMed ID: 21543830 [TBL] [Abstract][Full Text] [Related]
53. Superconductivity in single crystals of the fullerene C70. Schön JH; Kloc C; Siegrist T; Steigerwald M; Svensson C; Batlogg B Nature; 2001 Oct; 413(6858):831-3. PubMed ID: 11677603 [TBL] [Abstract][Full Text] [Related]
54. Chemical vapor deposition synthesis of N-, P-, and Si-doped single-walled carbon nanotubes. Campos-Delgado J; Maciel IO; Cullen DA; Smith DJ; Jorio A; Pimenta MA; Terrones H; Terrones M ACS Nano; 2010 Mar; 4(3):1696-702. PubMed ID: 20201558 [TBL] [Abstract][Full Text] [Related]
56. Physicochemical insights in supramolecular interaction of fullerenes C60 and C70 with a monoporphyrin in presence of silver nanoparticles. Mitra R; Chattopadhyay S; Bhattacharya S Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():284-93. PubMed ID: 22277621 [TBL] [Abstract][Full Text] [Related]
57. Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption. Vikramaditya T; Sumithra K J Comput Chem; 2014 Mar; 35(7):586-94. PubMed ID: 24395720 [TBL] [Abstract][Full Text] [Related]
58. Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes. Villalpando-Paez F; Muramatsu H; Kim YA; Farhat H; Endo M; Terrones M; Dresselhaus MS Nanoscale; 2010 Mar; 2(3):406-11. PubMed ID: 20644824 [TBL] [Abstract][Full Text] [Related]
59. Size- and orientation-selective encapsulation of C(70) by cycloparaphenylenes. Iwamoto T; Watanabe Y; Takaya H; Haino T; Yasuda N; Yamago S Chemistry; 2013 Oct; 19(42):14061-8. PubMed ID: 24108598 [TBL] [Abstract][Full Text] [Related]
60. Conductive, capacitive, and viscoelastic properties of a new composite of the C60-pd conducting polymer and single-wall carbon nanotubes. Pieta P; Grodzka E; Winkler K; Warczak M; Sadkowski A; Zukowska GZ; Venukadasula GM; D'Souza F; Kutner W J Phys Chem B; 2009 May; 113(19):6682-91. PubMed ID: 19361175 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]