These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 25397991)

  • 21. Electrochemical properties of graphene flakes as an air cathode material for Li-O2 batteries in an ether-based electrolyte.
    Kim SY; Lee HT; Kim KB
    Phys Chem Chem Phys; 2013 Dec; 15(46):20262-71. PubMed ID: 24166701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of Morphological Evolution of Li2O2 Particles during Electrochemical Growth.
    Mitchell RR; Gallant BM; Shao-Horn Y; Thompson CV
    J Phys Chem Lett; 2013 Apr; 4(7):1060-4. PubMed ID: 26282021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanocomposite of Fe2 O3 @C@MnO2 as an Efficient Cathode Catalyst for Rechargeable Lithium-Oxygen Batteries.
    Hu X; Cheng F; Zhang N; Han X; Chen J
    Small; 2015 Nov; 11(41):5545-50. PubMed ID: 26313469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quasi-Solid-State Rechargeable Li-O
    Cho SM; Shim J; Cho SH; Kim J; Son BD; Lee JC; Yoon WY
    ACS Appl Mater Interfaces; 2018 May; 10(18):15634-15641. PubMed ID: 29687989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon-, binder-, and precious metal-free cathodes for non-aqueous lithium-oxygen batteries: nanoflake-decorated nanoneedle oxide arrays.
    Riaz A; Jung KN; Chang W; Shin KH; Lee JW
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17815-22. PubMed ID: 25280376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Li2S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium-Sulfur Batteries.
    Wu M; Cui Y; Fu Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21479-86. PubMed ID: 26349017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An electrochemical impedance spectroscopy investigation of the overpotentials in Li-O2 batteries.
    Højberg J; McCloskey BD; Hjelm J; Vegge T; Johansen K; Norby P; Luntz AC
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4039-47. PubMed ID: 25625507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Importance of Reaction Kinetics and Oxygen Crossover in aprotic Li-O2 Batteries Based on a Dimethyl Sulfoxide Electrolyte.
    Marinaro M; Balasubramanian P; Gucciardi E; Theil S; Jörissen L; Wohlfahrt-Mehrens M
    ChemSusChem; 2015 Sep; 8(18):3139-45. PubMed ID: 26249807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1-2x)/3)Mn((2-x)/3)]O2 (0 ≤ x ≤ 0.5).
    Hy S; Felix F; Rick J; Su WN; Hwang BJ
    J Am Chem Soc; 2014 Jan; 136(3):999-1007. PubMed ID: 24364760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium-Oxygen Batteries.
    Xue H; Wu S; Tang J; Gong H; He P; He J; Zhou H
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8427-35. PubMed ID: 26967936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. History effects in lithium-oxygen batteries: how initial seeding influences the discharge capacity.
    Rinaldi A; Wijaya O; Hoster HE; Yu DY
    ChemSusChem; 2014 May; 7(5):1283-8. PubMed ID: 24591297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries.
    Zhang J; Luan Y; Lyu Z; Wang L; Xu L; Yuan K; Pan F; Lai M; Liu Z; Chen W
    Nanoscale; 2015 Sep; 7(36):14881-8. PubMed ID: 26290962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DMSO-Li2O2 Interface in the Rechargeable Li-O2 Battery Cathode: Theoretical and Experimental Perspectives on Stability.
    Schroeder MA; Kumar N; Pearse AJ; Liu C; Lee SB; Rubloff GW; Leung K; Noked M
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11402-11. PubMed ID: 25945948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of transition metal oxides on the kinetics of Li2O2 oxidation in Li-O2 batteries: high activity of chromium oxides.
    Yao KP; Lu YC; Amanchukwu CV; Kwabi DG; Risch M; Zhou J; Grimaud A; Hammond PT; Bardé F; Shao-Horn Y
    Phys Chem Chem Phys; 2014 Feb; 16(6):2297-304. PubMed ID: 24352578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.
    Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y
    J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intensive Study on the Catalytical Behavior of N-Methylphenothiazine as a Soluble Mediator to Oxidize the Li
    Feng N; Mu X; Zhang X; He P; Zhou H
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3733-3739. PubMed ID: 28079362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sacrificial Co-solvent Electrolyte to Construct a Stable Solid Electrolyte Interphase in Lithium-Oxygen Batteries.
    Zhang YN; Jiang FL; Bai F; Jiang H; Zhang T
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10327-10336. PubMed ID: 35175720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational Insights into Li
    Yi X; Liu X; Zhang P; Dou R; Wen Z; Zhou W
    J Phys Chem Lett; 2020 Mar; 11(6):2195-2202. PubMed ID: 31951140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of Carbon Nanotubes/Manganese Dioxide Composite Catalyst with Fewer Oxygen-Containing Groups for Li-O
    Ni W; Liu S; Fei Y; He Y; Ma X; Lu L; Deng Y
    ACS Appl Mater Interfaces; 2017 May; 9(17):14749-14757. PubMed ID: 28406287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries.
    Wang KX; Zhu QC; Chen JS
    Small; 2018 Jul; 14(27):e1800078. PubMed ID: 29750439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.