These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 25398055)

  • 1. Determining surface properties with bimodal and multimodal AFM.
    Forchheimer D; Borysov SS; Platz D; Haviland DB
    Nanotechnology; 2014 Dec; 25(48):485708. PubMed ID: 25398055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation of bimodal atomic force microscopy.
    Dou Z; Qian J; Li Y; Wang Z; Zhang Y; Lin R; Wang T
    Ultramicroscopy; 2020 May; 212():112971. PubMed ID: 32126474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cantilever energy effects on bimodal AFM: phase and amplitude contrast of multicomponent samples.
    Chakraborty I; Yablon DG
    Nanotechnology; 2013 Nov; 24(47):475706. PubMed ID: 24177059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.
    Killgore JP; Tung RC; Hurley DC
    Nanotechnology; 2014 Aug; 25(34):345701. PubMed ID: 25098183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual resonance excitation system for the contact mode of atomic force microscopy.
    Kopycinska-Müller M; Striegler A; Schlegel R; Kuzeyeva N; Köhler B; Wolter KJ
    Rev Sci Instrum; 2012 Apr; 83(4):043703. PubMed ID: 22559535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of the excitation frequency for high probe sensitivity in single-eigenmode and bimodal tapping-mode AFM.
    Eslami B; López-Guerra EA; Diaz AJ; Solares SD
    Nanotechnology; 2015 Apr; 26(16):165703. PubMed ID: 25825001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dynamic model of the jump-to phenomenon during AFM analysis.
    Bowen J; Cheneler D
    Langmuir; 2012 Dec; 28(50):17273-86. PubMed ID: 23157559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase imaging with intermodulation atomic force microscopy.
    Platz D; Tholén EA; Hutter C; von Bieren AC; Haviland DB
    Ultramicroscopy; 2010 May; 110(6):573-7. PubMed ID: 20227182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids.
    Martínez NF; Lozano JR; Herruzo ET; Garcia F; Richter C; Sulzbach T; Garcia R
    Nanotechnology; 2008 Sep; 19(38):384011. PubMed ID: 21832570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of solution concentration, surface bias and protonation on the dynamic response of amplitude-modulated atomic force microscopy in water.
    Wu Y; Gupta C; Shannon MA
    Langmuir; 2008 Oct; 24(19):10817-24. PubMed ID: 18763814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy dissipation and dynamic response of an amplitude-modulation atomic-force microscopy subjected to a tip-sample viscous force.
    Lin SM
    Ultramicroscopy; 2007; 107(2-3):245-53. PubMed ID: 16982149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes.
    Kiracofe D; Raman A; Yablon D
    Beilstein J Nanotechnol; 2013; 4():385-93. PubMed ID: 23844344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized Hertz model for bimodal nanomechanical mapping.
    Labuda A; Kocuń M; Meinhold W; Walters D; Proksch R
    Beilstein J Nanotechnol; 2016; 7():970-82. PubMed ID: 27547614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-contact AFM imaging in water using electrically driven cantilever vibration.
    Marchand DJ; Hsiao E; Kim SH
    Langmuir; 2013 Jun; 29(22):6762-9. PubMed ID: 23638991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual frequency atomic force microscopy on charged surfaces.
    Baumann M; Stark RW
    Ultramicroscopy; 2010 May; 110(6):578-81. PubMed ID: 20227181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy.
    Martínez NF; García R
    Nanotechnology; 2006 Apr; 17(7):S167-72. PubMed ID: 21727409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-resolution imaging in liquid by frequency modulation atomic force microscopy using small cantilevers with megahertz-order resonance frequencies.
    Fukuma T; Onishi K; Kobayashi N; Matsuki A; Asakawa H
    Nanotechnology; 2012 Apr; 23(13):135706. PubMed ID: 22421199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of a Si cantilever tip with/without tungsten coating on noncontact atomic force microscopy imaging of a Ge(001) surface.
    Naitoh Y; Kinoshita Y; Jun Li Y; Kageshima M; Sugawara Y
    Nanotechnology; 2009 Jul; 20(26):264011. PubMed ID: 19509444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A torsional resonance mode AFM for in-plane tip surface interactions.
    Huang L; Su C
    Ultramicroscopy; 2004 Aug; 100(3-4):277-85. PubMed ID: 15231320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic damping of a magnetically oscillated cantilever close to a surface.
    Rankl C; Pastushenko V; Kienberger F; Stroh CM; Hinterdorfer P
    Ultramicroscopy; 2004 Aug; 100(3-4):301-8. PubMed ID: 15231323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.