BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

880 related articles for article (PubMed ID: 25398132)

  • 1. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres.
    Strudwick AJ; Weber NE; Schwab MG; Kettner M; Weitz RT; Wünsch JR; Müllen K; Sachdev H
    ACS Nano; 2015 Jan; 9(1):31-42. PubMed ID: 25398132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes.
    Wu W; Yu Q; Peng P; Liu Z; Bao J; Pei SS
    Nanotechnology; 2012 Jan; 23(3):035603. PubMed ID: 22173552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities.
    Kahng YH; Lee S; Park W; Jo G; Choe M; Lee JH; Yu H; Lee T; Lee K
    Nanotechnology; 2012 Feb; 23(7):075702. PubMed ID: 22261350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical vapor deposition of N-doped graphene and carbon films: the role of precursors and gas phase.
    Ito Y; Christodoulou C; Nardi MV; Koch N; Sachdev H; Müllen K
    ACS Nano; 2014 Apr; 8(4):3337-46. PubMed ID: 24641621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-area synthesis of high-quality and uniform graphene films on copper foils.
    Li X; Cai W; An J; Kim S; Nah J; Yang D; Piner R; Velamakanni A; Jung I; Tutuc E; Banerjee SK; Colombo L; Ruoff RS
    Science; 2009 Jun; 324(5932):1312-4. PubMed ID: 19423775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications.
    Feng Y; Chen K
    Nanotechnology; 2015 Jan; 26(3):035302. PubMed ID: 25549272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films.
    Ramón ME; Gupta A; Corbet C; Ferrer DA; Movva HC; Carpenter G; Colombo L; Bourianoff G; Doczy M; Akinwande D; Tutuc E; Banerjee SK
    ACS Nano; 2011 Sep; 5(9):7198-204. PubMed ID: 21800895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uniformity of large-area bilayer graphene grown by chemical vapor deposition.
    Sheng Y; Rong Y; He Z; Fan Y; Warner JH
    Nanotechnology; 2015 Oct; 26(39):395601. PubMed ID: 26349521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-based electrodes for enhanced organic thin film transistors based on pentacene.
    Basu S; Lee MC; Wang YH
    Phys Chem Chem Phys; 2014 Aug; 16(31):16701-10. PubMed ID: 25000388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition.
    Ryu J; Kim Y; Won D; Kim N; Park JS; Lee EK; Cho D; Cho SP; Kim SJ; Ryu GH; Shin HA; Lee Z; Hong BH; Cho S
    ACS Nano; 2014 Jan; 8(1):950-6. PubMed ID: 24358985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano- and microstructuring of graphene using UV-NIL.
    Bergmair I; Hackl W; Losurdo M; Helgert C; Isic G; Rohn M; Jakovljevic MM; Mueller T; Giangregorio M; Kley EB; Fromherz T; Gajic R; Pertsch T; Bruno G; Muehlberger M
    Nanotechnology; 2012 Aug; 23(33):335301. PubMed ID: 22863600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper.
    Li X; Magnuson CW; Venugopal A; Tromp RM; Hannon JB; Vogel EM; Colombo L; Ruoff RS
    J Am Chem Soc; 2011 Mar; 133(9):2816-9. PubMed ID: 21309560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer of CVD-grown monolayer graphene onto arbitrary substrates.
    Suk JW; Kitt A; Magnuson CW; Hao Y; Ahmed S; An J; Swan AK; Goldberg BB; Ruoff RS
    ACS Nano; 2011 Sep; 5(9):6916-24. PubMed ID: 21894965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene.
    Niu T; Zhou M; Zhang J; Feng Y; Chen W
    J Am Chem Soc; 2013 Jun; 135(22):8409-14. PubMed ID: 23675983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate.
    Lin WH; Chen TH; Chang JK; Taur JI; Lo YY; Lee WL; Chang CS; Su WB; Wu CI
    ACS Nano; 2014 Feb; 8(2):1784-91. PubMed ID: 24471977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.