These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25398175)

  • 21. Impaired bone resorption in cathepsin K-deficient mice is partially compensated for by enhanced osteoclastogenesis and increased expression of other proteases via an increased RANKL/OPG ratio.
    Kiviranta R; Morko J; Alatalo SL; NicAmhlaoibh R; Risteli J; Laitala-Leinonen T; Vuorio E
    Bone; 2005 Jan; 36(1):159-72. PubMed ID: 15664014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation.
    Zawawi MS; Dharmapatni AA; Cantley MD; McHugh KP; Haynes DR; Crotti TN
    Biochem Biophys Res Commun; 2012 Oct; 427(2):404-9. PubMed ID: 23000414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitory effect of cantharidin on osteoclast differentiation and bone resorption.
    Kim MH; Shim KS; Kim SH
    Arch Pharm Res; 2010 Mar; 33(3):457-62. PubMed ID: 20361312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leonurine hydrochloride inhibits osteoclastogenesis and prevents osteoporosis associated with estrogen deficiency by inhibiting the NF-κB and PI3K/Akt signaling pathways.
    Yuan FL; Xu RS; Jiang DL; He XL; Su Q; Jin C; Li X
    Bone; 2015 Jun; 75():128-37. PubMed ID: 25708053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Short-term mechanical stress inhibits osteoclastogenesis via suppression of DC-STAMP in RAW264.7 cells.
    Kameyama S; Yoshimura Y; Kameyama T; Kikuiri T; Matsuno M; Deyama Y; Suzuki K; Iida J
    Int J Mol Med; 2013 Feb; 31(2):292-8. PubMed ID: 23292096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cav1.3 is upregulated in osteoporosis rat model and promotes osteoclast differentiation from preosteoclast cell line RAW264.7.
    Fan P; Hu N; Feng X; Sun Y; Pu D; Lv X; Hao Z; Li Y; Xue W; He L
    J Cell Physiol; 2019 Aug; 234(8):12821-12827. PubMed ID: 30741411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster.
    Herranz R; Larkin OJ; Dijkstra CE; Hill RJ; Anthony P; Davey MR; Eaves L; van Loon JJ; Medina FJ; Marco R
    BMC Genomics; 2012 Feb; 13():52. PubMed ID: 22296880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of microgravity modeled by large gradient high magnetic field on the osteogenic initiation of human mesenchymal stem cells.
    Shi D; Meng R; Deng W; Ding W; Zheng Q; Yuan W; Liu L; Zong C; Shang P; Wang J
    Stem Cell Rev Rep; 2010 Dec; 6(4):567-78. PubMed ID: 20697977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation.
    Liu M; Gao H; Shang P; Zhou X; Ashforth E; Zhuo Y; Chen D; Ren B; Liu Z; Zhang L
    PLoS One; 2011; 6(10):e24697. PubMed ID: 22039402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microgravity modulation of syncytin-A expression enhance osteoclast formation.
    Ethiraj P; Link JR; Sinkway JM; Brown GD; Parler WA; Reddy SV
    J Cell Biochem; 2018 Jul; 119(7):5696-5703. PubMed ID: 29388695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gravitational and magnetic field variations synergize to cause subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures.
    Manzano AI; van Loon JJ; Christianen PC; Gonzalez-Rubio JM; Medina FJ; Herranz R
    BMC Genomics; 2012 Mar; 13():105. PubMed ID: 22435851
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability.
    Dijkstra CE; Larkin OJ; Anthony P; Davey MR; Eaves L; Rees CE; Hill RJ
    J R Soc Interface; 2011 Mar; 8(56):334-44. PubMed ID: 20667843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single Cell Densitometry and Weightlessness Culture of Mesenchymal Stem Cells Using Magnetic Levitation.
    Anil-Inevi M; Yilmaz E; Sarigil O; Tekin HC; Ozcivici E
    Methods Mol Biol; 2020; 2125():15-25. PubMed ID: 31020635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity.
    Hammer BE; Kidder LS; Williams PC; Xu WW
    Microgravity Sci Technol; 2009 Nov; 21(4):311-318. PubMed ID: 20052306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments.
    Herranz R; Manzano AI; van Loon JJ; Christianen PC; Medina FJ
    Astrobiology; 2013 Mar; 13(3):217-24. PubMed ID: 23510084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.
    Wang Y; Chen ZH; Yin C; Ma JH; Li DJ; Zhao F; Sun YL; Hu LF; Shang P; Qian AR
    PLoS One; 2015; 10(1):e0116359. PubMed ID: 25635858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scaffold-free three-dimensional cell culturing using magnetic levitation.
    Türker E; Demirçak N; Arslan-Yildiz A
    Biomater Sci; 2018 Jun; 6(7):1745-1753. PubMed ID: 29700506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clinical significance of different effects of static and pulsed electromagnetic fields on human osteoclast cultures.
    Barnaba SA; Ruzzini L; Di Martino A; Lanotte A; Sgambato A; Denaro V
    Rheumatol Int; 2012 Apr; 32(4):1025-31. PubMed ID: 21246371
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyrolytic Graphite for an In-Plane Force Study of Diamagnetic Levitation: A Potential Microdetector of Cracks in Magnetic Material.
    Liu R; Yang W; Xiang H; Zhao P; Deng F; Yan J
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large gradient high magnetic fields affect osteoblast ultrastructure and function by disrupting collagen I or fibronectin/αβ1 integrin.
    Qian AR; Gao X; Zhang W; Li JB; Wang Y; Di SM; Hu LF; Shang P
    PLoS One; 2013; 8(1):e51036. PubMed ID: 23382804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.