BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 25398282)

  • 1. Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani.
    Luo C; Zhou H; Zou J; Wang X; Zhang R; Xiang Y; Chen Z
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1897-910. PubMed ID: 25398282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions.
    Luo C; Liu X; Zhou H; Wang X; Chen Z
    Appl Environ Microbiol; 2015 Jan; 81(1):422-31. PubMed ID: 25362061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity.
    Zeriouh H; de Vicente A; Pérez-García A; Romero D
    Environ Microbiol; 2014 Jul; 16(7):2196-211. PubMed ID: 24308294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production.
    Bais HP; Fall R; Vivanco JM
    Plant Physiol; 2004 Jan; 134(1):307-19. PubMed ID: 14684838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Construction and function analysis of Bac operon mutants of bio-control strain Bacillus subtilis Bs-916].
    Luo C; Chen Z; Liu Y; Zhang J; Liu Y; Wang X; Nie Y
    Wei Sheng Wu Xue Bao; 2009 Apr; 49(4):445-52. PubMed ID: 19621630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease.
    Guo Q; Dong W; Li S; Lu X; Wang P; Zhang X; Wang Y; Ma P
    Microbiol Res; 2014; 169(7-8):533-40. PubMed ID: 24380713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated biological and chemical control of rice sheath blight by Bacillus subtilis NJ-18 and jinggangmycin.
    Peng D; Li S; Wang J; Chen C; Zhou M
    Pest Manag Sci; 2014 Feb; 70(2):258-63. PubMed ID: 23564744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CMR12a.
    Olorunleke FE; Hua GK; Kieu NP; Ma Z; Höfte M
    Environ Microbiol Rep; 2015 Oct; 7(5):774-81. PubMed ID: 26085277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani.
    Liu H; Tian W; Li B; Wu G; Ibrahim M; Tao Z; Wang Y; Xie G; Li H; Sun G
    Biotechnol Lett; 2012 Dec; 34(12):2291-8. PubMed ID: 22932934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening of high-yielding biocontrol bacterium Bs-916 mutant by ion implantation.
    Li D; Nie F; Wei L; Wei B; Chen Z
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1401-8. PubMed ID: 17549470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca.
    Romero D; de Vicente A; Rakotoaly RH; Dufour SE; Veening JW; Arrebola E; Cazorla FM; Kuipers OP; Paquot M; Pérez-García A
    Mol Plant Microbe Interact; 2007 Apr; 20(4):430-40. PubMed ID: 17427813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic Lipopeptides of Bacillus amyloliquefaciens subsp. plantarum Colonizing the Lettuce Rhizosphere Enhance Plant Defense Responses Toward the Bottom Rot Pathogen Rhizoctonia solani.
    Chowdhury SP; Uhl J; Grosch R; Alquéres S; Pittroff S; Dietel K; Schmitt-Kopplin P; Borriss R; Hartmann A
    Mol Plant Microbe Interact; 2015 Sep; 28(9):984-95. PubMed ID: 26011557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The double life of Ceratobasidium: orchid mycorrhizal fungi and their potential for biocontrol of Rhizoctonia solani sheath blight of rice.
    Mosquera-Espinosa AT; Bayman P; Prado GA; Gómez-Carabalí A; Otero JT
    Mycologia; 2013; 105(1):141-50. PubMed ID: 22962357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential for the integration of biological and chemical control of sheath blight disease caused by Rhizoctonia solani on rice.
    Boukaew S; Klinmanee C; Prasertsan P
    World J Microbiol Biotechnol; 2013 Oct; 29(10):1885-93. PubMed ID: 23653261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass spectrometry identification of antifungal lipopeptides from Bacillus sp. BCLRB2 against Rhizoctonia solani and Sclerotinia sclerotiorum.
    Elkahoui S; Djébali N; Karkouch I; Ibrahim AH; Kalai L; Bachkovel S; Tabbene O; Limam F
    Prikl Biokhim Mikrobiol; 2014; 50(2):184-8. PubMed ID: 25272736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Sporulation, competence development and biopesticide activity of a Bacillus subtilis mutant].
    Wang X; Luo C; Liu Y; Liu Y; Nie Y; Chen Z
    Wei Sheng Wu Xue Bao; 2009 Oct; 49(10):1295-300. PubMed ID: 20069874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detoxification of oxalic acid by pseudomonas fluorescens strain pfMDU2: implications for the biological control of rice sheath blight caused by Rhizoctonia solani.
    Nagarajkumar M; Jayaraj J; Muthukrishnan S; Bhaskaran R; Velazhahan R
    Microbiol Res; 2005; 160(3):291-8. PubMed ID: 16035241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and biochemical characterization of Iranian surfactin-producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gloeosporioides.
    Mohammadipour M; Mousivand M; Salehi Jouzani G; Abbasalizadeh S
    Can J Microbiol; 2009 Apr; 55(4):395-404. PubMed ID: 19396239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization of soil bacteria antagonistic to Rhizoctonia solani, sheath blight of rice.
    Padaria JC; Singh A
    J Environ Sci Health B; 2009 May; 44(4):397-402. PubMed ID: 19365757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides.
    Kim PI; Ryu J; Kim YH; Chi YT
    J Microbiol Biotechnol; 2010 Jan; 20(1):138-45. PubMed ID: 20134245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.