BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25398344)

  • 21. Efficient Homologous Recombination in Mice Using Long Single Stranded DNA and CRISPR Cas9 Nickase.
    Ge XA; Hunter CP
    G3 (Bethesda); 2019 Jan; 9(1):281-286. PubMed ID: 30504134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a CRISPR/Cas9
    Ma JX; He WY; Hua HM; Zhu Q; Zheng GS; Zimin AA; Wang WF; Lu YH
    ACS Synth Biol; 2023 Oct; 12(10):3114-3123. PubMed ID: 37722085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly efficient generation of isogenic pluripotent stem cell models using prime editing.
    Li H; Busquets O; Verma Y; Syed KM; Kutnowski N; Pangilinan GR; Gilbert LA; Bateup HS; Rio DC; Hockemeyer D; Soldner F
    Elife; 2022 Sep; 11():. PubMed ID: 36069759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PREVENTING THE CHROMOSOMAL TRANSLOCATIONS THAT CAUSE CANCER.
    Hromas R; Williamson E; Lee SH; Nickoloff J
    Trans Am Clin Climatol Assoc; 2016; 127():176-195. PubMed ID: 28066052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of Gene Editing Activity Directed by Single-Stranded Oligonucleotides and CRISPR/Cas9 Systems.
    Bialk P; Rivera-Torres N; Strouse B; Kmiec EB
    PLoS One; 2015; 10(6):e0129308. PubMed ID: 26053390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Versatile Protocol to Generate Translocations in Yeast Genomes Using CRISPR/Cas9.
    Agier N; Fleiss A; Delmas S; Fischer G
    Methods Mol Biol; 2021; 2196():181-198. PubMed ID: 32889721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fanconi anemia gene editing by the CRISPR/Cas9 system.
    Osborn MJ; Gabriel R; Webber BR; DeFeo AP; McElroy AN; Jarjour J; Starker CG; Wagner JE; Joung JK; Voytas DF; von Kalle C; Schmidt M; Blazar BR; Tolar J
    Hum Gene Ther; 2015 Feb; 26(2):114-26. PubMed ID: 25545896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A protocol for custom CRISPR Cas9 donor vector construction to truncate genes in mammalian cells using pcDNA3 backbone.
    Vazquez N; Sanchez L; Marks R; Martinez E; Fanniel V; Lopez A; Salinas A; Flores I; Hirschmann J; Gilkerson R; Schuenzel E; Dearth R; Halaby R; Innis-Whitehouse W; Keniry M
    BMC Mol Biol; 2018 Mar; 19(1):3. PubMed ID: 29540148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome editing using Cas9 nickases.
    Trevino AE; Zhang F
    Methods Enzymol; 2014; 546():161-74. PubMed ID: 25398340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting.
    Chen X; Janssen JM; Liu J; Maggio I; 't Jong AEJ; Mikkers HMM; Gonçalves MAFV
    Nat Commun; 2017 Sep; 8(1):657. PubMed ID: 28939824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of double strand breaks and chromosomal translocations.
    Iarovaia OV; Rubtsov M; Ioudinkova E; Tsfasman T; Razin SV; Vassetzky YS
    Mol Cancer; 2014 Nov; 13():249. PubMed ID: 25404525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice.
    Mikami M; Toki S; Endo M
    Plant Cell Physiol; 2016 May; 57(5):1058-68. PubMed ID: 26936792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Precise and broad scope genome editing based on high-specificity Cas9 nickases.
    Wang Q; Liu J; Janssen JM; Le Bouteiller M; Frock RL; Gonçalves MAFV
    Nucleic Acids Res; 2021 Jan; 49(2):1173-1198. PubMed ID: 33398349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular characterization of the genomic breakpoint junction in a t(11;22) translocation in Ewing sarcoma.
    Obata K; Hiraga H; Nojima T; Yoshida MC; Abe S
    Genes Chromosomes Cancer; 1999 May; 25(1):6-15. PubMed ID: 10221334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of mechanistic factors in promoting chromosomal translocations found in lymphoid and other cancers.
    Zhang Y; Gostissa M; Hildebrand DG; Becker MS; Boboila C; Chiarle R; Lewis S; Alt FW
    Adv Immunol; 2010; 106():93-133. PubMed ID: 20728025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of oncogenic chromosomal translocations.
    Byrne M; Wray J; Reinert B; Wu Y; Nickoloff J; Lee SH; Hromas R; Williamson E
    Ann N Y Acad Sci; 2014 Mar; 1310():89-97. PubMed ID: 24528169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Translocations in normal B cells and cancers: insights from new technical approaches.
    Chiarle R
    Adv Immunol; 2013; 117():39-71. PubMed ID: 23611285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining.
    Ghezraoui H; Piganeau M; Renouf B; Renaud JB; Sallmyr A; Ruis B; Oh S; Tomkinson AE; Hendrickson EA; Giovannangeli C; Jasin M; Brunet E
    Mol Cell; 2014 Sep; 55(6):829-842. PubMed ID: 25201414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of single guided Cas9 nickase to facilitate precise and efficient genome editing in human iPSCs.
    Li PP; Margolis RL
    Sci Rep; 2021 May; 11(1):9865. PubMed ID: 33972655
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient and safe therapeutic use of paired Cas9-nickases for primary hyperoxaluria type 1.
    Torella L; Klermund J; Bilbao-Arribas M; Tamayo I; Andrieux G; Chmielewski KO; Vales A; Olagüe C; Moreno-Luqui D; Raimondi I; Abad A; Torrens-Baile J; Salido E; Huarte M; Hernaez M; Boerries M; Cathomen T; Zabaleta N; Gonzalez-Aseguinolaza G
    EMBO Mol Med; 2024 Jan; 16(1):112-131. PubMed ID: 38182795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.