These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 25398354)

  • 1. Multiplex engineering of industrial yeast genomes using CRISPRm.
    Ryan OW; Cate JH
    Methods Enzymol; 2014; 546():473-89. PubMed ID: 25398354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced scale and scope of genome engineering and regulation using CRISPR/Cas in Saccharomyces cerevisiae.
    Deaner M; Alper HS
    FEMS Yeast Res; 2019 Nov; 19(7):. PubMed ID: 31665284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of chromosomal DNA libraries using a multiplex CRISPR system.
    Ryan OW; Skerker JM; Maurer MJ; Li X; Tsai JC; Poddar S; Lee ME; DeLoache W; Dueber JE; Arkin AP; Cate JH
    Elife; 2014 Aug; 3():. PubMed ID: 25139909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR Mediated Genome Engineering and its Application in Industry.
    Kaboli S; Babazada H
    Curr Issues Mol Biol; 2018; 26():81-92. PubMed ID: 28879858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mCAL: A New Approach for Versatile Multiplex Action of Cas9 Using One sgRNA and Loci Flanked by a Programmed Target Sequence.
    Finnigan GC; Thorner J
    G3 (Bethesda); 2016 Jul; 6(7):2147-56. PubMed ID: 27185399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae.
    Sasano Y; Nagasawa K; Kaboli S; Sugiyama M; Harashima S
    Sci Rep; 2016 Aug; 6():30278. PubMed ID: 27530680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host.
    Cernak P; Estrela R; Poddar S; Skerker JM; Cheng YF; Carlson AK; Chen B; Glynn VM; Furlan M; Ryan OW; Donnelly MK; Arkin AP; Taylor JW; Cate JHD
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in Industrial Biotechnology Using CRISPR-Cas Systems.
    Donohoue PD; Barrangou R; May AP
    Trends Biotechnol; 2018 Feb; 36(2):134-146. PubMed ID: 28778606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae.
    Jakočiūnas T; Bonde I; Herrgård M; Harrison SJ; Kristensen M; Pedersen LE; Jensen MK; Keasling JD
    Metab Eng; 2015 Mar; 28():213-222. PubMed ID: 25638686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing.
    Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae.
    Reider Apel A; d'Espaux L; Wehrs M; Sachs D; Li RA; Tong GJ; Garber M; Nnadi O; Zhuang W; Hillson NJ; Keasling JD; Mukhopadhyay A
    Nucleic Acids Res; 2017 Jan; 45(1):496-508. PubMed ID: 27899650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains.
    Lian J; Bao Z; Hu S; Zhao H
    Biotechnol Bioeng; 2018 Jun; 115(6):1630-1635. PubMed ID: 29460422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding the CRISPR/Cas9 Toolbox for Gene Engineering in S. cerevisiae.
    Levi O; Arava Y
    Curr Microbiol; 2020 Mar; 77(3):468-478. PubMed ID: 31901956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas12a Multiplex Genome Editing of Saccharomyces cerevisiae and the Creation of Yeast Pixel Art.
    Ciurkot K; Vonk B; Gorochowski TE; Roubos JA; Verwaal R
    J Vis Exp; 2019 May; (147):. PubMed ID: 31205318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
    Shi S; Liang Y; Zhang MM; Ang EL; Zhao H
    Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Genomewide Evolution-Based CRISPR/Cas9 with Donor-Free (GEbCD) for Developing Robust and Productive Industrial Yeast.
    Zhang J; Zhao G; Bai W; Chen Y; Zhang Y; Li F; Wang M; Shen Y; Wang Y; Wang X; Li C
    ACS Synth Biol; 2024 Aug; 13(8):2335-2346. PubMed ID: 39012160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes.
    Hess GT; Tycko J; Yao D; Bassik MC
    Mol Cell; 2017 Oct; 68(1):26-43. PubMed ID: 28985508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.
    Sakuma T; Sakamoto T; Yamamoto T
    Methods Mol Biol; 2017; 1498():41-56. PubMed ID: 27709568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.