BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

535 related articles for article (PubMed ID: 25398648)

  • 1. Proteolysis mediated by cysteine cathepsins and legumain-recent advances and cell biological challenges.
    Brix K; McInnes J; Al-Hashimi A; Rehders M; Tamhane T; Haugen MH
    Protoplasma; 2015 May; 252(3):755-74. PubMed ID: 25398648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mammalian legumain - A lysosomal cysteine protease with extracellular functions?
    Lunde NN; Bosnjak T; Solberg R; Johansen HT
    Biochimie; 2019 Nov; 166():77-83. PubMed ID: 31181234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine cathepsins: cellular roadmap to different functions.
    Brix K; Dunkhorst A; Mayer K; Jordans S
    Biochimie; 2008 Feb; 90(2):194-207. PubMed ID: 17825974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions.
    Jordans S; Jenko-Kokalj S; Kühl NM; Tedelind S; Sendt W; Brömme D; Turk D; Brix K
    BMC Biochem; 2009 Sep; 10():23. PubMed ID: 19772638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cysteine cathepsins: from structure, function and regulation to new frontiers.
    Turk V; Stoka V; Vasiljeva O; Renko M; Sun T; Turk B; Turk D
    Biochim Biophys Acta; 2012 Jan; 1824(1):68-88. PubMed ID: 22024571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear legumain activity in colorectal cancer.
    Haugen MH; Johansen HT; Pettersen SJ; Solberg R; Brix K; Flatmark K; Maelandsmo GM
    PLoS One; 2013; 8(1):e52980. PubMed ID: 23326369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Papain-like cysteine proteases.
    Brömme D
    Curr Protoc Protein Sci; 2001 May; Chapter 21():Unit 21.2. PubMed ID: 18429163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On Blastocystis secreted cysteine proteases: a legumain-activated cathepsin B increases paracellular permeability of intestinal Caco-2 cell monolayers.
    Nourrisson C; Wawrzyniak I; Cian A; Livrelli V; Viscogliosi E; Delbac F; Poirier P
    Parasitology; 2016 Nov; 143(13):1713-1722. PubMed ID: 27609526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of lysosomal cysteine proteases in lung disease.
    Wolters PJ; Chapman HA
    Respir Res; 2000; 1(3):170-7. PubMed ID: 11667982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine cathepsins and their potential in clinical therapy and biomarker discovery.
    Fonović M; Turk B
    Proteomics Clin Appl; 2014 Jun; 8(5-6):416-26. PubMed ID: 24470315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular depletion of major cathepsin proteases reveals their concerted activities for lysosomal proteolysis.
    Gallwitz L; Bleibaum F; Voss M; Schweizer M; Spengler K; Winter D; Zöphel F; Müller S; Lichtenthaler S; Damme M; Saftig P
    Cell Mol Life Sci; 2024 May; 81(1):227. PubMed ID: 38775843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct properties of prohormone thiol protease (PTP) compared to cathepsins B, L, and H: evidence for PTP as a novel cysteine protease.
    Azaryan AV; Hook VY
    Arch Biochem Biophys; 1994 Oct; 314(1):171-7. PubMed ID: 7944391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors: when reaction mechanism is more important than specificity.
    Rozman-Pungercar J; Kopitar-Jerala N; Bogyo M; Turk D; Vasiljeva O; Stefe I; Vandenabeele P; Brömme D; Puizdar V; Fonović M; Trstenjak-Prebanda M; Dolenc I; Turk V; Turk B
    Cell Death Differ; 2003 Aug; 10(8):881-8. PubMed ID: 12867995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the Proteolytic Activity of Cysteine Cathepsins by Oxidants.
    Lalmanach G; Saidi A; Bigot P; Chazeirat T; Lecaille F; Wartenberg M
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32178437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond.
    Vizovišek M; Fonović M; Turk B
    Matrix Biol; 2019 Jan; 75-76():141-159. PubMed ID: 29409929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for extracellularly acting cathepsins mediating thyroid hormone liberation in thyroid epithelial cells.
    Brix K; Lemansky P; Herzog V
    Endocrinology; 1996 May; 137(5):1963-74. PubMed ID: 8612537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational predictions of cysteine cathepsin-mediated fibrinogen proteolysis.
    Ferrall-Fairbanks MC; West DM; Douglas SA; Averett RD; Platt MO
    Protein Sci; 2018 Mar; 27(3):714-724. PubMed ID: 29266558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysosomal protein turnover contributes to the acquisition of TGFβ-1 induced invasive properties of mammary cancer cells.
    Kern U; Wischnewski V; Biniossek ML; Schilling O; Reinheckel T
    Mol Cancer; 2015 Feb; 14():39. PubMed ID: 25744631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cysteine Cathepsins and their Extracellular Roles: Shaping the Microenvironment.
    Vidak E; Javoršek U; Vizovišek M; Turk B
    Cells; 2019 Mar; 8(3):. PubMed ID: 30897858
    [No Abstract]   [Full Text] [Related]  

  • 20. Strategies for detection and quantification of cysteine cathepsins-evolution from bench to bedside.
    Hughes CS; Burden RE; Gilmore BF; Scott CJ
    Biochimie; 2016 Mar; 122():48-61. PubMed ID: 26253694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.