These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25398695)

  • 21. Pirlindole and dehydropirlindole protect rat cultured neuronal cells against oxidative stress-induced cell death through a mechanism unrelated to MAO-A inhibition.
    Boland A; Gérardy J; Mossay D; Delapierre D; Seutin V
    Br J Pharmacol; 2002 Feb; 135(3):713-20. PubMed ID: 11834619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington's disease.
    McBride JL; Ramaswamy S; Gasmi M; Bartus RT; Herzog CD; Brandon EP; Zhou L; Pitzer MR; Berry-Kravis EM; Kordower JH
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9345-50. PubMed ID: 16751280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dopamine enhances motor and neuropathological consequences of polyglutamine expanded huntingtin.
    Cyr M; Sotnikova TD; Gainetdinov RR; Caron MG
    FASEB J; 2006 Dec; 20(14):2541-3. PubMed ID: 17065224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient.
    Chae JI; Kim DW; Lee N; Jeon YJ; Jeon I; Kwon J; Kim J; Soh Y; Lee DS; Seo KS; Choi NJ; Park BC; Kang SH; Ryu J; Oh SH; Shin DA; Lee DR; Do JT; Park IH; Daley GQ; Song J
    Biochem J; 2012 Sep; 446(3):359-71. PubMed ID: 22694310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterozygous huntingtin promotes cadmium neurotoxicity and neurodegeneration in striatal cells via altered metal transport and protein kinase C delta dependent oxidative stress and apoptosis signaling mechanisms.
    Kwakye GF; Jiménez JA; Thomas MG; Kingsley BA; McIIvin M; Saito MA; Korley EM
    Neurotoxicology; 2019 Jan; 70():48-61. PubMed ID: 30399392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the effects of two 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine analogs, 1-methyl-4-(2-thienyl)-1,2,3,6-tetrahydropyridine and 1-methyl-4-(3-thienyl)-1,2,3,6-tetrahydropyridine, on monoamine oxidase in vitro and on dopamine in mouse brain.
    Fuller RW; Robertson DW; Hemrick-Luecke SK
    J Pharmacol Exp Ther; 1987 Feb; 240(2):415-20. PubMed ID: 3100775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wild-type huntingtin ameliorates striatal neuronal atrophy but does not prevent other abnormalities in the YAC128 mouse model of Huntington disease.
    Van Raamsdonk JM; Pearson J; Murphy Z; Hayden MR; Leavitt BR
    BMC Neurosci; 2006 Dec; 7():80. PubMed ID: 17147801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux.
    Lee H; Noh JY; Oh Y; Kim Y; Chang JW; Chung CW; Lee ST; Kim M; Ryu H; Jung YK
    Hum Mol Genet; 2012 Jan; 21(1):101-14. PubMed ID: 21954231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glucose transporter 3 is a rab11-dependent trafficking cargo and its transport to the cell surface is reduced in neurons of CAG140 Huntington's disease mice.
    McClory H; Williams D; Sapp E; Gatune LW; Wang P; DiFiglia M; Li X
    Acta Neuropathol Commun; 2014 Dec; 2():179. PubMed ID: 25526803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CEP-1347 reduces mutant huntingtin-associated neurotoxicity and restores BDNF levels in R6/2 mice.
    Apostol BL; Simmons DA; Zuccato C; Illes K; Pallos J; Casale M; Conforti P; Ramos C; Roarke M; Kathuria S; Cattaneo E; Marsh JL; Thompson LM
    Mol Cell Neurosci; 2008 Sep; 39(1):8-20. PubMed ID: 18602275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell type-specific localization of optineurin in the striatal neurons of mice: implications for neuronal vulnerability in Huntington's disease.
    Okita S; Morigaki R; Koizumi H; Kaji R; Nagahiro S; Goto S
    Neuroscience; 2012 Jan; 202():363-70. PubMed ID: 22155493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcineurin is involved in the early activation of NMDA-mediated cell death in mutant huntingtin knock-in striatal cells.
    Xifró X; García-Martínez JM; Del Toro D; Alberch J; Pérez-Navarro E
    J Neurochem; 2008 Jun; 105(5):1596-612. PubMed ID: 18221365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monoamine oxidase-inhibition and MPTP-induced neurotoxicity in the non-human primate: comparison of rasagiline (TVP 1012) with selegiline.
    Kupsch A; Sautter J; Götz ME; Breithaupt W; Schwarz J; Youdim MB; Riederer P; Gerlach M; Oertel WH
    J Neural Transm (Vienna); 2001; 108(8-9):985-1009. PubMed ID: 11716151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop.
    Kannike K; Sepp M; Zuccato C; Cattaneo E; Timmusk T
    J Biol Chem; 2014 Nov; 289(47):32845-57. PubMed ID: 25271153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soluble mutant huntingtin drives early human pathogenesis in Huntington's disease.
    Miguez A; Gomis C; Vila C; Monguió-Tortajada M; Fernández-García S; Bombau G; Galofré M; García-Bravo M; Sanders P; Fernández-Medina H; Poquet B; Salado-Manzano C; Roura S; Alberch J; Segovia JC; Allen ND; Borràs FE; Canals JM
    Cell Mol Life Sci; 2023 Aug; 80(8):238. PubMed ID: 37535170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A striatal-enriched intronic GPCR modulates huntingtin levels and toxicity.
    Yao Y; Cui X; Al-Ramahi I; Sun X; Li B; Hou J; Difiglia M; Palacino J; Wu ZY; Ma L; Botas J; Lu B
    Elife; 2015 Mar; 4():. PubMed ID: 25738228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ex vivo delivery of GDNF maintains motor function and prevents neuronal loss in a transgenic mouse model of Huntington's disease.
    Ebert AD; Barber AE; Heins BM; Svendsen CN
    Exp Neurol; 2010 Jul; 224(1):155-62. PubMed ID: 20227407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington's disease.
    Vázquez-Manrique RP; Farina F; Cambon K; Dolores Sequedo M; Parker AJ; Millán JM; Weiss A; Déglon N; Neri C
    Hum Mol Genet; 2016 Mar; 25(6):1043-58. PubMed ID: 26681807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rac1 Activity Is Modulated by Huntingtin and Dysregulated in Models of Huntington's Disease.
    Tousley A; Iuliano M; Weisman E; Sapp E; Zhang N; Vodicka P; Alexander J; Aviolat H; Gatune L; Reeves P; Li X; Khvorova A; Ellerby LM; Aronin N; DiFiglia M; Kegel-Gleason KB
    J Huntingtons Dis; 2019; 8(1):53-69. PubMed ID: 30594931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression.
    Mathews TA; Fedele DE; Coppelli FM; Avila AM; Murphy DL; Andrews AM
    J Neurosci Methods; 2004 Dec; 140(1-2):169-81. PubMed ID: 15589347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.