These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 25398882)

  • 1. The influenza hemagglutinin fusion domain is an amphipathic helical hairpin that functions by inducing membrane curvature.
    Smrt ST; Draney AW; Lorieau JL
    J Biol Chem; 2015 Jan; 290(1):228-38. PubMed ID: 25398882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determinants for the membrane insertion of the transmembrane peptide of hemagglutinin from influenza virus.
    Victor BL; Baptista AM; Soares CM
    J Chem Inf Model; 2012 Nov; 52(11):3001-12. PubMed ID: 23101989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary structure, orientation, oligomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin.
    Tatulian SA; Tamm LK
    Biochemistry; 2000 Jan; 39(3):496-507. PubMed ID: 10642174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR structures of fusion peptide from influenza hemagglutinin H3 subtype and its mutants.
    Du T; Jiang L; Liu M
    J Pept Sci; 2014 Apr; 20(4):292-7. PubMed ID: 24677267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complete influenza hemagglutinin fusion domain adopts a tight helical hairpin arrangement at the lipid:water interface.
    Lorieau JL; Louis JM; Bax A
    Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11341-6. PubMed ID: 20534508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin.
    Han X; Bushweller JH; Cafiso DS; Tamm LK
    Nat Struct Biol; 2001 Aug; 8(8):715-20. PubMed ID: 11473264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of mutant influenza virus hemagglutinin fusion peptides with lipid bilayers: probing the role of hydrophobic residue size in the central region of the fusion peptide.
    Han X; Steinhauer DA; Wharton SA; Tamm LK
    Biochemistry; 1999 Nov; 38(45):15052-9. PubMed ID: 10555988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and dynamics of a fusion peptide helical hairpin on the membrane surface: comparison of molecular simulations and NMR.
    Brice AR; Lazaridis T
    J Phys Chem B; 2014 May; 118(17):4461-70. PubMed ID: 24712538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterizations of fusion peptide analogs of influenza virus hemagglutinin. Implication of the necessity of a helix-hinge-helix motif in fusion activity.
    Hsu CH; Wu SH; Chang DK; Chen C
    J Biol Chem; 2002 Jun; 277(25):22725-33. PubMed ID: 11937502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the N-terminal glycine on the secondary structure, orientation, and interaction of the influenza hemagglutinin fusion peptide with lipid bilayers.
    Gray C; Tatulian SA; Wharton SA; Tamm LK
    Biophys J; 1996 May; 70(5):2275-86. PubMed ID: 9172751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Configuration of influenza hemagglutinin fusion peptide monomers and oligomers in membranes.
    Sammalkorpi M; Lazaridis T
    Biochim Biophys Acta; 2007 Jan; 1768(1):30-8. PubMed ID: 16999933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of fusion peptide-membrane interactions.
    Li Y; Han X; Tamm LK
    Biochemistry; 2003 Jun; 42(23):7245-51. PubMed ID: 12795621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution Structure and Membrane Interaction of the Cytoplasmic Tail of HIV-1 gp41 Protein.
    Murphy RE; Samal AB; Vlach J; Saad JS
    Structure; 2017 Nov; 25(11):1708-1718.e5. PubMed ID: 29056482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR solution structure and position of transportan in neutral phospholipid bicelles.
    Bárány-Wallje E; Andersson A; Gräslund A; Mäler L
    FEBS Lett; 2004 Jun; 567(2-3):265-9. PubMed ID: 15178334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single mutation effects on conformational change and membrane deformation of influenza hemagglutinin fusion peptides.
    Li J; Das P; Zhou R
    J Phys Chem B; 2010 Jul; 114(26):8799-806. PubMed ID: 20552971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the curvature induction and membrane localization of the influenza virus M2 protein using static and off-magic-angle spinning solid-state nuclear magnetic resonance of oriented bicelles.
    Wang T; Hong M
    Biochemistry; 2015 Apr; 54(13):2214-26. PubMed ID: 25774685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane structures of the hemifusion-inducing fusion peptide mutant G1S and the fusion-blocking mutant G1V of influenza virus hemagglutinin suggest a mechanism for pore opening in membrane fusion.
    Li Y; Han X; Lai AL; Bushweller JH; Cafiso DS; Tamm LK
    J Virol; 2005 Sep; 79(18):12065-76. PubMed ID: 16140782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid tail protrusion in simulations predicts fusogenic activity of influenza fusion peptide mutants and conformational models.
    Larsson P; Kasson PM
    PLoS Comput Biol; 2013; 9(3):e1002950. PubMed ID: 23505359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular view of the role of fusion peptides in promoting positive membrane curvature.
    Fuhrmans M; Marrink SJ
    J Am Chem Soc; 2012 Jan; 134(3):1543-52. PubMed ID: 22191854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane interactions of mutated forms of the influenza fusion peptide.
    Epand RM; Epand RF; Martin I; Ruysschaert JM
    Biochemistry; 2001 Jul; 40(30):8800-7. PubMed ID: 11467940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.