BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 25399056)

  • 1. Biosynthetic incorporation of the azulene moiety in proteins with high efficiency.
    Shao J; Korendovych IV; Broos J
    Amino Acids; 2015 Jan; 47(1):213-6. PubMed ID: 25399056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Chemically Defined Media to Express Trp-Analog-Labeled Proteins in a Lactococcus lactis Trp Auxotroph.
    Shao J; Marcondes MF; Oliveira V; Broos J
    J Mol Microbiol Biotechnol; 2016; 26(4):269-76. PubMed ID: 27172771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An expression system for the efficient incorporation of an expanded set of tryptophan analogues.
    Petrović DM; Leenhouts K; van Roosmalen ML; Broos J
    Amino Acids; 2013 May; 44(5):1329-36. PubMed ID: 23404517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of beta-(1-azulenyl)-L-alanine as a potential blue-colored fluorescent tryptophan analog and its use in peptide synthesis.
    Loidl G; Musiol HJ; Budisa N; Huber R; Poirot S; Fourmy D; Moroder L
    J Pept Sci; 2000 Mar; 6(3):139-44. PubMed ID: 10759212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactococcus lactis as expression host for the biosynthetic incorporation of tryptophan analogues into recombinant proteins.
    El Khattabi M; van Roosmalen ML; Jager D; Metselaar H; Permentier H; Leenhouts K; Broos J
    Biochem J; 2008 Jan; 409(1):193-8. PubMed ID: 17910535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Carbohydrate metabolism and lactic acid biosynthesis of Lactococcus lactis subsp. lactis KLDS4.0325].
    Yang X; Wang Y; Zhou Y; Gao X; Bailiang L; Huo G
    Wei Sheng Wu Xue Bao; 2014 Oct; 54(10):1146-54. PubMed ID: 25803891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Painting argyrins blue: Negishi cross-coupling for synthesis of deep-blue tryptophan analogue β-(1-azulenyl)-l alanine and its incorporation into argyrin C.
    Stempel E; Kaml RF; Budisa N; Kalesse M
    Bioorg Med Chem; 2018 Oct; 26(19):5259-5269. PubMed ID: 29729984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HtrA is essential for efficient secretion of recombinant proteins by Lactococcus lactis.
    Sriraman K; Jayaraman G
    Appl Environ Microbiol; 2008 Dec; 74(23):7442-6. PubMed ID: 18836019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of beta-selenolo[3,2-b]pyrrolyl-alanine into proteins for phase determination in protein X-ray crystallography.
    Bae JH; Alefelder S; Kaiser JT; Friedrich R; Moroder L; Huber R; Budisa N
    J Mol Biol; 2001 Jun; 309(4):925-36. PubMed ID: 11399069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of GFP to trace the colonization of Lactococcus lactis WH-C1 in the gastrointestinal tract of mice.
    Wang Y; Wang J; Dai W
    J Microbiol Methods; 2011 Sep; 86(3):390-2. PubMed ID: 21704659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A protein, belonging to a family of RNA-binding transcriptional anti-terminators, controls beta-glucoside assimilation in Lactococcus lactis.
    Bardowski J; Ehrlich SD; Chopin A
    Dev Biol Stand; 1995; 85():555-9. PubMed ID: 8586232
    [No Abstract]   [Full Text] [Related]  

  • 12. A food-grade delivery system for Lactococcus lactis and evaluation of inducible gene expression.
    Simões-Barbosa A; Abreu H; Silva Neto A; Gruss A; Langella P
    Appl Microbiol Biotechnol; 2004 Jul; 65(1):61-7. PubMed ID: 14758518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis.
    Prasad SB; Ramachandran KB; Jayaraman G
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1593-607. PubMed ID: 22367612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beneficial Impacts of Incorporating the Non-Natural Amino Acid Azulenyl-Alanine into the Trp-Rich Antimicrobial Peptide buCATHL4B.
    D'Souza AR; Necelis MR; Kulesha A; Caputo GA; Makhlynets OV
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33809374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk.
    Alegría A; Delgado S; Roces C; López B; Mayo B
    Int J Food Microbiol; 2010 Sep; 143(1-2):61-6. PubMed ID: 20708289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cmbT gene encodes a novel major facilitator multidrug resistance transporter in Lactococcus lactis.
    Filipic B; Golic N; Jovcic B; Tolinacki M; Bay DC; Turner RJ; Antic-Stankovic J; Kojic M; Topisirovic L
    Res Microbiol; 2013 Jan; 164(1):46-54. PubMed ID: 22985829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering.
    Hols P; Kleerebezem M; Schanck AN; Ferain T; Hugenholtz J; Delcour J; de Vos WM
    Nat Biotechnol; 1999 Jun; 17(6):588-92. PubMed ID: 10385325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteins with beta-(thienopyrrolyl)alanines as alternative chromophores and pharmaceutically active amino acids.
    Budisa N; Alefelder S; Bae JH; Golbik R; Minks C; Huber R; Moroder L
    Protein Sci; 2001 Jul; 10(7):1281-92. PubMed ID: 11420430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion.
    Morello E; Bermúdez-Humarán LG; Llull D; Solé V; Miraglio N; Langella P; Poquet I
    J Mol Microbiol Biotechnol; 2008; 14(1-3):48-58. PubMed ID: 17957110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new and efficient phosphate starvation inducible expression system for Lactococcus lactis.
    Sirén N; Salonen K; Leisola M; Nyyssölä A
    Appl Microbiol Biotechnol; 2008 Jul; 79(5):803-10. PubMed ID: 18431568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.