BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25399117)

  • 1. Proteomics characterization of tick-host-pathogen interactions.
    Popara M; Villar M; de la Fuente J
    Methods Mol Biol; 2015; 1247():513-27. PubMed ID: 25399117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the tick-pathogen interface by quantitative proteomics.
    Villar M; Popara M; Bonzón-Kulichenko E; Ayllón N; Vázquez J; de la Fuente J
    Ticks Tick Borne Dis; 2012 Jun; 3(3):154-8. PubMed ID: 22647712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the Salivary Gland Transcriptome of Unfed and Partially Fed
    Esteves E; Maruyama SR; Kawahara R; Fujita A; Martins LA; Righi AA; Costa FB; Palmisano G; Labruna MB; Sá-Nunes A; Ribeiro JMC; Fogaça AC
    Front Cell Infect Microbiol; 2017; 7():476. PubMed ID: 29209593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative proteomics for the characterization of the most relevant Amblyomma tick species as vectors of zoonotic pathogens worldwide.
    Villar M; Popara M; Mangold AJ; de la Fuente J
    J Proteomics; 2014 Jun; 105():204-16. PubMed ID: 24382551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Update on the proteomics of major arthropod vectors of human and animal pathogens.
    Patramool S; Choumet V; Surasombatpattana P; Sabatier L; Thomas F; Thongrungkiat S; Rabilloud T; Boulanger N; Biron DG; Missé D
    Proteomics; 2012 Dec; 12(23-24):3510-23. PubMed ID: 23077092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vaccinomics Approach to Tick Vaccine Development.
    Contreras M; Villar M; Alberdi P; de la Fuente J
    Methods Mol Biol; 2016; 1404():275-286. PubMed ID: 27076305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactomics and tick vaccine development: new directions for the control of tick-borne diseases.
    Artigas-Jerónimo S; De La Fuente J; Villar M
    Expert Rev Proteomics; 2018 Aug; 15(8):627-635. PubMed ID: 30067120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A proteomic insight into the midgut proteome of Ornithodoros moubata females reveals novel information on blood digestion in argasid ticks.
    Oleaga A; Obolo-Mvoulouga P; Manzano-Román R; Pérez-Sánchez R
    Parasit Vectors; 2017 Aug; 10(1):366. PubMed ID: 28764815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The case for oxidative stress molecule involvement in the tick-pathogen interactions -an omics approach.
    Hernandez EP; Talactac MR; Fujisaki K; Tanaka T
    Dev Comp Immunol; 2019 Nov; 100():103409. PubMed ID: 31200008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions.
    Chmelař J; Kotál J; Karim S; Kopacek P; Francischetti IMB; Pedra JHF; Kotsyfakis M
    Trends Parasitol; 2016 Mar; 32(3):242-254. PubMed ID: 26520005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tick-host-pathogen systems immunobiology: an interactive trio.
    Wikel SK
    Front Biosci (Landmark Ed); 2018 Jan; 23(2):265-283. PubMed ID: 28930546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection.
    Merino O; Antunes S; Mosqueda J; Moreno-Cid JA; Pérez de la Lastra JM; Rosario-Cruz R; Rodríguez S; Domingos A; de la Fuente J
    Vaccine; 2013 Dec; 31(49):5889-96. PubMed ID: 24084474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tick salivary compounds: their role in modulation of host defences and pathogen transmission.
    Kazimírová M; Štibrániová I
    Front Cell Infect Microbiol; 2013; 3():43. PubMed ID: 23971008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional genomics and evolution of tick-Anaplasma interactions and vaccine development.
    de la Fuente J; Kocan KM; Blouin EF; Zivkovic Z; Naranjo V; Almazán C; Esteves E; Jongejan F; Daffre S; Mangold AJ
    Vet Parasitol; 2010 Feb; 167(2-4):175-86. PubMed ID: 19819630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative proteomics analysis reveals core and variable tick salivary proteins at the tick-vertebrate host interface.
    Bensaoud C; Tenzer S; Poplawski A; Medina JM; Jmel MA; Voet H; Mekki I; Aparicio-Puerta E; Cuveele B; Distler U; Marini F; Hackenberg M; Kotsyfakis M
    Mol Ecol; 2022 Aug; 31(15):4162-4175. PubMed ID: 35661311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva.
    Mudenda L; Pierlé SA; Turse JE; Scoles GA; Purvine SO; Nicora CD; Clauss TR; Ueti MW; Brown WC; Brayton KA
    Int J Parasitol; 2014 Nov; 44(13):1029-37. PubMed ID: 25110293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Graph Theory to Characterize Human and Arthropod Vector Cell Protein Response to Infection With
    Estrada-Peña A; Villar M; Artigas-Jerónimo S; López V; Alberdi P; Cabezas-Cruz A; de la Fuente J
    Front Cell Infect Microbiol; 2018; 8():265. PubMed ID: 30123779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small protease inhibitors in tick saliva and salivary glands and their role in tick-host-pathogen interactions.
    Martins LA; Kotál J; Bensaoud C; Chmelař J; Kotsyfakis M
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140336. PubMed ID: 31816416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tick Bioactive Molecules as Novel Therapeutics: Beyond Vaccine Targets.
    Murfin KE; Fikrig E
    Front Cell Infect Microbiol; 2017; 7():222. PubMed ID: 28634573
    [No Abstract]   [Full Text] [Related]  

  • 20. Functional genomic studies of tick cells in response to infection with the cattle pathogen, Anaplasma marginale.
    de la Fuente J; Blouin EF; Manzano-Roman R; Naranjo V; Almazán C; Pérez de la Lastra JM; Zivkovic Z; Jongejan F; Kocan KM
    Genomics; 2007 Dec; 90(6):712-22. PubMed ID: 17964755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.