BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25399117)

  • 21. Tick salivary gland transcriptomics and proteomics.
    Martins LA; Bensaoud C; Kotál J; Chmelař J; Kotsyfakis M
    Parasite Immunol; 2021 May; 43(5):e12807. PubMed ID: 33135186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of Heat Shock and Other Stress Response Proteins in Ticks and Cultured Tick Cells in Response to Anaplasma spp. Infection and Heat Shock.
    Villar M; Ayllón N; Busby AT; Galindo RC; Blouin EF; Kocan KM; Bonzón-Kulichenko E; Zivkovic Z; Almazán C; Torina A; Vázquez J; de la Fuente J
    Int J Proteomics; 2010; 2010():657261. PubMed ID: 22084679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Importance of localized skin infection in tick-borne encephalitis virus transmission.
    Labuda M; Austyn JM; Zuffova E; Kozuch O; Fuchsberger N; Lysy J; Nuttall PA
    Virology; 1996 May; 219(2):357-66. PubMed ID: 8638401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ticks and Borrelia: model systems for investigating pathogen-arthropod interactions.
    Schwan TG
    Infect Agents Dis; 1996 Jun; 5(3):167-81. PubMed ID: 8805079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epidemiological consequences of host specificity of ticks (Ixodida).
    Kiewra D; Lonc E
    Ann Parasitol; 2012; 58(4):181-7. PubMed ID: 23914612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identifying the last supper: utility of the DNA barcode library for bloodmeal identification in ticks.
    Gariepy TD; Lindsay R; Ogden N; Gregory TR
    Mol Ecol Resour; 2012 Jul; 12(4):646-52. PubMed ID: 22471892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The importance of the aggregation of ticks on small mammal hosts for the establishment and persistence of tick-borne pathogens: an investigation using the R(0) model.
    Harrison A; Bennett NC
    Parasitology; 2012 Oct; 139(12):1605-13. PubMed ID: 23036641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ecology of ticks and epidemiology of tick-borne viral diseases.
    Estrada-Peña A; de la Fuente J
    Antiviral Res; 2014 Aug; 108():104-28. PubMed ID: 24925264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative Visions of Reality at the Tick-Host Interface: Biochemistry, Genomics, Proteomics, and Transcriptomics as Measures of Complete Inventories of the Tick Sialoverse.
    Mans BJ
    Front Cell Infect Microbiol; 2020; 10():574405. PubMed ID: 33042874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advances in the genomics of ticks and tick-borne pathogens.
    Jongejan F; Nene V; de la Fuente J; Pain A; Willadsen P
    Trends Parasitol; 2007 Sep; 23(9):391-6. PubMed ID: 17656151
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput approaches to study salivary proteins and genes from vectors of disease.
    Valenzuela JG
    Insect Biochem Mol Biol; 2002 Oct; 32(10):1199-209. PubMed ID: 12225911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA interference for the study and genetic manipulation of ticks.
    de la Fuente J; Kocan KM; Almazán C; Blouin EF
    Trends Parasitol; 2007 Sep; 23(9):427-33. PubMed ID: 17656154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhipicephalus (Boophilus) microplus tick in vitro feeding methods for functional (dsRNA) and vaccine candidate (antibody) screening.
    Lew-Tabor AE; Bruyeres AG; Zhang B; Rodriguez Valle M
    Ticks Tick Borne Dis; 2014 Sep; 5(5):500-10. PubMed ID: 24875450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembled protein arrays from an Ornithodoros moubata salivary gland expression library.
    Manzano-Román R; Díaz-Martín V; González-González M; Matarraz S; Álvarez-Prado AF; LaBaer J; Orfao A; Pérez-Sánchez R; Fuentes M
    J Proteome Res; 2012 Dec; 11(12):5972-82. PubMed ID: 23140423
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina.
    Antunes S; Galindo RC; Almazán C; Rudenko N; Golovchenko M; Grubhoffer L; Shkap V; do Rosário V; de la Fuente J; Domingos A
    Int J Parasitol; 2012 Feb; 42(2):187-95. PubMed ID: 22265898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ticks: physiological aspects with implications for pathogen transmission.
    Reuben Kaufman W
    Ticks Tick Borne Dis; 2010 Mar; 1(1):11-22. PubMed ID: 21771507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity - a review.
    Santiago PB; de Araújo CN; Motta FN; Praça YR; Charneau S; Bastos IM; Santana JM
    Parasit Vectors; 2017 Feb; 10(1):79. PubMed ID: 28193252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protozoan and bacterial pathogens in tick salivary glands in wild and domestic animal environments in South Africa.
    Berggoetz M; Schmid M; Ston D; Wyss V; Chevillon C; Pretorius AM; Gern L
    Ticks Tick Borne Dis; 2014 Mar; 5(2):176-85. PubMed ID: 24378080
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular characterization of ticks and tick-borne pathogens.
    Sparagano O; Jongejan F
    Parassitologia; 1999 Sep; 41 Suppl 1():101-5. PubMed ID: 11071554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From the fat body to the hemolymph: Profiling tick immune and storage proteins through transcriptomics and proteomics.
    Urbanová V; Lu S; Kalinová E; Martins L; Kozelková T; Dyčka F; Ribeiro JM; Hajdušek O; Perner J; Kopáček P
    Insect Biochem Mol Biol; 2024 Feb; 165():104072. PubMed ID: 38185274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.