These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 25399142)

  • 1. Energy transfer models in nitrogen plasmas: analysis of N₂(X¹Σg⁺)-N(⁴S(u))-e⁻ interaction.
    Heritier KL; Jaffe RL; Laporta V; Panesi M
    J Chem Phys; 2014 Nov; 141(18):184302. PubMed ID: 25399142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rovibrational internal energy transfer and dissociation of N2(1Σg+)-N(4S(u)) system in hypersonic flows.
    Panesi M; Jaffe RL; Schwenke DW; Magin TE
    J Chem Phys; 2013 Jan; 138(4):044312. PubMed ID: 23387589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a coarse-grain quasi-classical trajectory method. II. Comparison against the direct molecular simulation method.
    Macdonald RL; Grover MS; Schwartzentruber TE; Panesi M
    J Chem Phys; 2018 Feb; 148(5):054310. PubMed ID: 29421878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.
    Liu Y; Panesi M; Sahai A; Vinokur M
    J Chem Phys; 2015 Apr; 142(13):134109. PubMed ID: 25854230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method.
    Panesi M; Munafò A; Magin TE; Jaffe RL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013009. PubMed ID: 25122371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental determination of the rate of V-V collisional relaxation in (14)N2 in its ground (X(1)Σ(g)(+)) electronic state between 77 and 300 K.
    Martínez RZ; Bermejo D
    Phys Chem Chem Phys; 2015 May; 17(19):12661-72. PubMed ID: 25903654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotational and vibrational relaxation of methane excited to 2nu3 in CH4/H2 and CH4/He mixtures at 296 and 193 K from double-resonance measurements.
    Menard-Bourcin F; Boursier C; Doyennette L; Menard J
    J Phys Chem A; 2005 Apr; 109(14):3111-9. PubMed ID: 16833637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows.
    Munafò A; Panesi M; Magin TE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023001. PubMed ID: 25353565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational relaxation of O2(X3 Sigma g-, v = 9-13) by collisions with O2.
    Watanabe S; Usuda SY; Fujii H; Hatano H; Tokue I; Yamasaki K
    Phys Chem Chem Phys; 2007 Aug; 9(31):4407-13. PubMed ID: 17687487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rovibrational-Specific QCT and Master Equation Study on N
    Jo SM; Venturi S; Sharma MP; Munafò A; Panesi M
    J Phys Chem A; 2022 Jun; 126(21):3273-3290. PubMed ID: 35604650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrational relaxation of methane by oxygen collisions: measurements of the near-resonant energy transfer between CH4 and O2 at low temperature.
    Boursier C; Ménard J; Ménard-Bourcin F
    J Phys Chem A; 2007 Aug; 111(30):7022-30. PubMed ID: 17608460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiative charge transfer in He(+) + H2 collisions in the milli- to nano-electron-volt range: a theoretical study within state-to-state and optical potential approaches.
    Mrugała F; Kraemer WP
    J Chem Phys; 2013 Mar; 138(10):104315. PubMed ID: 23514497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equilibration of vibrationally excited OH in atomic and diatomic bath gases.
    McCaffery AJ; Pritchard M; Turner JF; Marsh RJ
    J Phys Chem A; 2011 May; 115(17):4169-78. PubMed ID: 21480649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rovibrational energy transfer and dissociation in O2-O collisions.
    Andrienko DA; Boyd ID
    J Chem Phys; 2016 Mar; 144(10):104301. PubMed ID: 26979687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-dependence of vibrational relaxation between highly vibrationally excited KH (X1Σ+, ν"=14-23) and H2, and N2.
    Wang SY; Zhang B; Zhu DH; Dai K; Shen YF
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():517-25. PubMed ID: 22728970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Rovibrational state distributions of H2 in collisional energy transfer between NaK (6(1)sigma(+)) and H2].
    Wang SY; Dai K; Liu J; Shen YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Dec; 32(12):3183-7. PubMed ID: 23427531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of state-resolved rovibrational coarse-grain model for nitrogen to stochastic particle method for simulating internal energy excitation and dissociation.
    Torres E; Magin TE
    J Chem Phys; 2018 Nov; 149(17):174106. PubMed ID: 30408979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy transfer between polyatomic molecules II: Energy transfer quantities and probability density functions in benzene, toluene, p-xylene, and azulene collisions.
    Bernshtein V; Oref I
    J Phys Chem A; 2006 Feb; 110(4):1541-51. PubMed ID: 16435815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron-vibration energy exchange models in nitrogen-containing plasma flows.
    Laporta V; Bruno D
    J Chem Phys; 2013 Mar; 138(10):104319. PubMed ID: 23514501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The He-LiH potential energy surface revisited. II. Rovibrational energy transfer on a three-dimensional surface.
    Taylor BK; Hinde RJ
    J Chem Phys; 2005 Feb; 122(7):074308. PubMed ID: 15743233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.