These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
466 related articles for article (PubMed ID: 25399154)
1. Structure of spherical electric double layers with fully asymmetric electrolytes: a systematic study by Monte Carlo simulations and density functional theory. Patra CN J Chem Phys; 2014 Nov; 141(18):184702. PubMed ID: 25399154 [TBL] [Abstract][Full Text] [Related]
2. Structure of spherical electric double layers containing mixed electrolytes: a systematic study by Monte Carlo simulations and density functional theory. Patra CN J Phys Chem B; 2010 Aug; 114(32):10550-7. PubMed ID: 20701385 [TBL] [Abstract][Full Text] [Related]
3. Structure of spherical electric double layers: a density functional approach. Goel T; Patra CN J Chem Phys; 2007 Jul; 127(3):034502. PubMed ID: 17655443 [TBL] [Abstract][Full Text] [Related]
4. Molecular solvent model of spherical electric double layers: a systematic study by Monte Carlo simulations and density functional theory. Patra CN J Phys Chem B; 2009 Oct; 113(42):13980-7. PubMed ID: 19778069 [TBL] [Abstract][Full Text] [Related]
5. Structure of colloidal solution in presence of mixed electrolytes: a solvent restricted primitive model study. Modak B; Patra CN; Ghosh SK; Das P J Phys Chem B; 2011 Oct; 115(42):12126-34. PubMed ID: 21919495 [TBL] [Abstract][Full Text] [Related]
6. Structure of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory. Goel T; Patra CN; Ghosh SK; Mukherjee T J Chem Phys; 2008 Oct; 129(15):154906. PubMed ID: 19045228 [TBL] [Abstract][Full Text] [Related]
7. Effect of ionic size on the structure of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory. Goel T; Patra CN; Ghosh SK; Mukherjee T J Phys Chem B; 2011 Sep; 115(37):10903-10. PubMed ID: 21827170 [TBL] [Abstract][Full Text] [Related]
8. Three component model of cylindrical electric double layers containing mixed electrolytes: A systematic study by Monte Carlo simulations and density functional theory. Goel T; Patra CN; Ghosh SK; Mukherjee T J Chem Phys; 2010 May; 132(19):194706. PubMed ID: 20499983 [TBL] [Abstract][Full Text] [Related]
9. Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions. Yu YX; Wu J; Gao GH J Chem Phys; 2004 Apr; 120(15):7223-33. PubMed ID: 15267630 [TBL] [Abstract][Full Text] [Related]
10. Size and charge correlations in spherical electric double layers: a case study with fully asymmetric mixed electrolytes within the solvent primitive model. Patra CN RSC Adv; 2020 Oct; 10(64):39017-39025. PubMed ID: 35518397 [TBL] [Abstract][Full Text] [Related]
11. Molecular solvent model of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory. Goel T; Patra CN; Ghosh SK; Mukherjee T J Chem Phys; 2008 Oct; 129(15):154707. PubMed ID: 19045218 [TBL] [Abstract][Full Text] [Related]
12. Influence of anisotropic ion shape on structure and capacitance of an electric double layer: a Monte Carlo and density functional study. Lamperski S; Kaja M; Bhuiyan LB; Wu J; Henderson D J Chem Phys; 2013 Aug; 139(5):054703. PubMed ID: 23927277 [TBL] [Abstract][Full Text] [Related]
13. Ionic density distributions near the charged colloids: spherical electric double layers. Kim EY; Kim SC J Chem Phys; 2013 Nov; 139(19):194711. PubMed ID: 24320348 [TBL] [Abstract][Full Text] [Related]
14. Ionic asymmetry and solvent excluded volume effects on spherical electric double layers: a density functional approach. Medasani B; Ovanesyan Z; Thomas DG; Sushko ML; Marucho M J Chem Phys; 2014 May; 140(20):204510. PubMed ID: 24880304 [TBL] [Abstract][Full Text] [Related]
15. The weighted correlation approach for density functional theory: a study on the structure of the electric double layer. Wang Z; Liu L; Neretnieks I J Phys Condens Matter; 2011 May; 23(17):175002. PubMed ID: 21483081 [TBL] [Abstract][Full Text] [Related]
16. Monte Carlo simulation for the double layer structure of an ionic liquid using a dimer model: a comparison with the density functional theory. Bhuiyan LB; Lamperski S; Wu J; Henderson D J Phys Chem B; 2012 Aug; 116(34):10364-70. PubMed ID: 22861126 [TBL] [Abstract][Full Text] [Related]
17. Density-functional theory and Monte Carlo simulation study on the electric double layer around DNA in mixed-size counterion systems. Wang K; Yu YX; Gao GH; Luo GS J Chem Phys; 2005 Dec; 123(23):234904. PubMed ID: 16392946 [TBL] [Abstract][Full Text] [Related]
18. Insights from Monte Carlo simulations on charge inversion of planar electric double layers in mixtures of asymmetric electrolytes. Wang ZY; Ma YQ J Chem Phys; 2010 Aug; 133(6):064704. PubMed ID: 20707583 [TBL] [Abstract][Full Text] [Related]
19. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores. Buyukdagli S; Manghi M; Palmeri J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729 [TBL] [Abstract][Full Text] [Related]
20. Structure of an electric double layer containing a 2:2 valency dimer electrolyte. Silvestre-Alcantara W; Henderson D; Wu J; Kaja M; Lamperski S; Bhuiyan LB J Colloid Interface Sci; 2015 Jul; 449():175-9. PubMed ID: 25529333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]