These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25399183)

  • 1. Simulations of water transport through carbon nanotubes: how different water models influence the conduction rate.
    Liu L; Patey GN
    J Chem Phys; 2014 Nov; 141(18):18C518. PubMed ID: 25399183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated conduction rates of water through a (6,6) carbon nanotube strongly depend on bulk properties of the model employed.
    Liu L; Patey GN
    J Chem Phys; 2016 May; 144(18):184502. PubMed ID: 27179490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A molecular dynamics investigation of the influence of water structure on ion conduction through a carbon nanotube.
    Liu L; Patey GN
    J Chem Phys; 2017 Feb; 146(7):074502. PubMed ID: 28228035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2012 Jul; 137(4):044102. PubMed ID: 22852592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2013 Mar; 138(12):124701. PubMed ID: 23556736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Water Models on Transmembrane Self-Assembled Cyclic Peptide Nanotubes.
    Calvelo M; Lynch CI; Granja JR; Sansom MSP; Garcia-Fandiño R
    ACS Nano; 2021 Apr; 15(4):7053-7064. PubMed ID: 33739081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of water entry in hydrophobic channels of carbon nanotubes.
    Kumar H; Mukherjee B; Lin ST; Dasgupta C; Sood AK; Maiti PK
    J Chem Phys; 2011 Mar; 134(12):124105. PubMed ID: 21456643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strongly anisotropic orientational relaxation of water molecules in narrow carbon nanotubes and nanorings.
    Mukherjee B; Maiti PK; Dasgupta C; Sood AK
    ACS Nano; 2008 Jun; 2(6):1189-96. PubMed ID: 19206336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of water filling the hydrophobic channels of narrow carbon nanotubes studied by molecular dynamics simulations.
    Wu K; Zhou B; Xiu P; Qi W; Wan R; Fang H
    J Chem Phys; 2010 Nov; 133(20):204702. PubMed ID: 21133447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of fluid flow on the oligonucleotide folding in single-walled carbon nanotubes.
    Lim MC; Zhong ZW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041915. PubMed ID: 19905350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How fast does water flow in carbon nanotubes?
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2013 Mar; 138(9):094701. PubMed ID: 23485316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1H nuclear spin relaxation of liquid water from molecular dynamics simulations.
    Calero C; Martí J; Guàrdia E
    J Phys Chem B; 2015 Feb; 119(5):1966-73. PubMed ID: 25584483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores.
    Bankura A; Chandra A
    J Phys Chem B; 2012 Aug; 116(32):9744-57. PubMed ID: 22793519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation of single-walled silicon carbide nanotubes immersed in water.
    Taghavi F; Javadian S; Hashemianzadeh SM
    J Mol Graph Model; 2013 Jul; 44():33-43. PubMed ID: 23732304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water transport inside a single-walled carbon nanotube driven by a temperature gradient.
    Shiomi J; Maruyama S
    Nanotechnology; 2009 Feb; 20(5):055708. PubMed ID: 19417367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water alignment and proton conduction inside carbon nanotubes.
    Mann DJ; Halls MD
    Phys Rev Lett; 2003 May; 90(19):195503. PubMed ID: 12785955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics and energetics of hydrophobically confined water.
    Bauer BA; Ou S; Patel S; Siva K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051506. PubMed ID: 23004766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow of water through carbon nanotubes predicted by different atomistic water models.
    Losey J; Kannam SK; Todd BD; Sadus RJ
    J Chem Phys; 2019 May; 150(19):194501. PubMed ID: 31117773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating water transport through a charged SWCNT: a molecular dynamics simulation.
    Lu D
    Phys Chem Chem Phys; 2013 Sep; 15(34):14447-57. PubMed ID: 23884179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of fast proton transport along one-dimensional water chains confined in carbon nanotubes.
    Cao Z; Peng Y; Yan T; Li S; Li A; Voth GA
    J Am Chem Soc; 2010 Aug; 132(33):11395-7. PubMed ID: 20669967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.