These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25399531)

  • 1. Treatment of synthetic urine by electrochemical oxidation using conductive-diamond anodes.
    Dbira S; Bensalah N; Bedoui A; Cañizares P; Rodrigo MA
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6176-84. PubMed ID: 25399531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism and kinetics of electrochemical degradation of uric acid using conductive-diamond anodes.
    Dbira S; Bensalah N; Bedoui A
    Environ Technol; 2016 Dec; 37(23):2993-3001. PubMed ID: 27108970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radical attack and mineralization mechanisms on electrochemical oxidation of p-substituted phenols at boron-doped diamond anodes.
    Jiang H; Dang C; Liu W; Wang T
    Chemosphere; 2020 Jun; 248():126033. PubMed ID: 32004882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Oxidation/Disinfection of Urine Wastewaters with Different Anode Materials.
    Dbira S; Bensalah N; Ahmad MI; Bedoui A
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 30995773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineralization of the recalcitrant oxalic and oxamic acids by electrochemical advanced oxidation processes using a boron-doped diamond anode.
    Garcia-Segura S; Brillas E
    Water Res; 2011 Apr; 45(9):2975-84. PubMed ID: 21477836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical incineration of omeprazole in neutral aqueous medium using a platinum or boron-doped diamond anode: degradation kinetics and oxidation products.
    Cavalcanti EB; Garcia-Segura S; Centellas F; Brillas E
    Water Res; 2013 Apr; 47(5):1803-15. PubMed ID: 23351432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical mineralization of cephalexin using a conductive diamond anode: A mechanistic and toxicity investigation.
    Coledam DAC; Pupo MMS; Silva BF; Silva AJ; Eguiluz KIB; Salazar-Banda GR; Aquino JM
    Chemosphere; 2017 Feb; 168():638-647. PubMed ID: 27847122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH.
    Bagastyo AY; Batstone DJ; Kristiana I; Gernjak W; Joll C; Radjenovic J
    Water Res; 2012 Nov; 46(18):6104-12. PubMed ID: 22995242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High efficiencies in the electrochemical oxidation of an anthraquinonic dye with conductive-diamond anodes.
    Aquino JM; Rocha-Filho RC; Sáez C; Cañizares P; Rodrigo MA
    Environ Sci Pollut Res Int; 2014; 21(14):8442-50. PubMed ID: 24652577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pilot scale performance of the electro-oxidation of landfill leachate at boron-doped diamond anodes.
    Anglada A; Urtiaga A; Ortiz I
    Environ Sci Technol; 2009 Mar; 43(6):2035-40. PubMed ID: 19368210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical oxidation of tramadol in low-salinity reverse osmosis concentrates using boron-doped diamond anodes.
    Lütke Eversloh C; Schulz M; Wagner M; Ternes TA
    Water Res; 2015 Apr; 72():293-304. PubMed ID: 25660808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of select organic compounds on perchlorate formation at boron-doped diamond film anodes.
    Donaghue A; Chaplin BP
    Environ Sci Technol; 2013; 47(21):12391-9. PubMed ID: 24066803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrolytic and electro-irradiated technologies for the removal of chloramphenicol in synthetic urine with diamond anodes.
    Cotillas S; Lacasa E; Sáez C; Cañizares P; Rodrigo MA
    Water Res; 2018 Jan; 128():383-392. PubMed ID: 29126034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of organic compounds from cooling tower blowdown by electrochemical oxidation: Role of electrodes and operational parameters.
    Saha P; Bruning H; Wagner TV; Rijnaarts HHM
    Chemosphere; 2020 Nov; 259():127491. PubMed ID: 32650167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of electrode materials for the anodic oxidation of a real landfill leachate--comparison between Ti-Ru-Sn ternary oxide, PbO(2) and boron-doped diamond anode.
    Panizza M; Martinez-Huitle CA
    Chemosphere; 2013 Jan; 90(4):1455-60. PubMed ID: 23026163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anodic oxidation with doped diamond electrodes: a new advanced oxidation process.
    Kraft A; Stadelmann M; Blaschke M
    J Hazard Mater; 2003 Oct; 103(3):247-61. PubMed ID: 14573343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical degradation of an anionic surfactant on boron-doped diamond anodes.
    Louhichi B; Ahmadi MF; Bensalah N; Gadri A; Rodrigo MA
    J Hazard Mater; 2008 Oct; 158(2-3):430-7. PubMed ID: 18329797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of Chlorination Byproducts and Their Emission Pathways in Chlorine Mediated Electro-Oxidation of Urine on Active and Nonactive Type Anodes.
    Zöllig H; Remmele A; Fritzsche C; Morgenroth E; Udert KM
    Environ Sci Technol; 2015 Sep; 49(18):11062-9. PubMed ID: 26214011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of oxyfluorfen from ex-situ soil washing fluids using electrolysis with diamond anodes.
    Dos Santos EV; Sáez C; Martínez-Huitle CA; Cañizares P; Rodrigo MA
    J Environ Manage; 2016 Apr; 171():260-266. PubMed ID: 26846982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical degradation of the antihypertensive losartan in aqueous medium by electro-oxidation with boron-doped diamond electrode.
    Salazar C; Contreras N; Mansilla HD; Yáñez J; Salazar R
    J Hazard Mater; 2016 Dec; 319():84-92. PubMed ID: 27180209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.