BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 25399631)

  • 1. Nondispersive optical activity of meshed helical metamaterials.
    Park HS; Kim TT; Kim HD; Kim K; Min B
    Nat Commun; 2014 Nov; 5():5435. PubMed ID: 25399631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband angle- and permittivity-insensitive nondispersive optical activity based on planar chiral metamaterials.
    Song K; Su Z; Wang M; Silva S; Bhattarai K; Ding C; Liu Y; Luo C; Zhao X; Zhou J
    Sci Rep; 2017 Sep; 7(1):10730. PubMed ID: 28878332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral metamaterials: enhancement and control of optical activity and circular dichroism.
    Oh SS; Hess O
    Nano Converg; 2015; 2(1):24. PubMed ID: 28191410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers.
    Zhao Y; Belkin MA; Alù A
    Nat Commun; 2012 May; 3():870. PubMed ID: 22643897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersion-free broadband optical polarization rotation based on helix photonic metamaterials.
    Li YR; Hung YC
    Opt Express; 2015 Jun; 23(13):16772-81. PubMed ID: 26191689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband asymmetric waveguiding of light without polarization limitations.
    Xu Y; Gu C; Hou B; Lai Y; Li J; Chen H
    Nat Commun; 2013; 4():2561. PubMed ID: 24096709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional optical metamaterial with a negative refractive index.
    Valentine J; Zhang S; Zentgraf T; Ulin-Avila E; Genov DA; Bartal G; Zhang X
    Nature; 2008 Sep; 455(7211):376-9. PubMed ID: 18690249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring dispersion for broadband low-loss optical metamaterials using deep-subwavelength Inclusions.
    Jiang ZH; Yun S; Lin L; Bossard JA; Werner DH; Mayer TS
    Sci Rep; 2013; 3():1571. PubMed ID: 23535875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New approach for extraordinary transmission through an array of subwavelength apertures using thin ENNZ metamaterial liners.
    Baladi E; Pollock JG; Iyer AK
    Opt Express; 2015 Aug; 23(16):20356-65. PubMed ID: 26367891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband circular polarizers constructed using helix-like chiral metamaterials.
    Ji R; Wang SW; Liu X; Chen X; Lu W
    Nanoscale; 2016 Aug; 8(31):14725-9. PubMed ID: 27352818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable variable-index elasto-optic metamaterials for macroscopic optical components and devices.
    Shin D; Kim J; Kim C; Bae K; Baek S; Kang G; Urzhumov Y; Smith DR; Kim K
    Nat Commun; 2017 Jul; 8():16090. PubMed ID: 28699634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-ideal optical metamaterial absorbers with super-octave bandwidth.
    Bossard JA; Lin L; Yun S; Liu L; Werner DH; Mayer TS
    ACS Nano; 2014 Feb; 8(2):1517-24. PubMed ID: 24472069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials.
    Kaina N; Lemoult F; Fink M; Lerosey G
    Nature; 2015 Sep; 525(7567):77-81. PubMed ID: 26333466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials.
    Han S; Cong L; Lin H; Xiao B; Yang H; Singh R
    Sci Rep; 2016 Feb; 6():20801. PubMed ID: 26857034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reflective interferometry for optical metamaterial phase measurements.
    O'Brien K; Lanzillotti-Kimura ND; Suchowski H; Kante B; Park Y; Yin X; Zhang X
    Opt Lett; 2012 Oct; 37(19):4089-91. PubMed ID: 23027288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifunctional plasmonic metamaterials enabled by subwavelength nano-notches for broadband, polarization-independent enhanced optical transmission and passive beam-steering.
    Jiang ZH; Lin L; Bossard JA; Werner DH
    Opt Express; 2013 Dec; 21(25):31492-505. PubMed ID: 24514723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances.
    Wu C; Arju N; Kelp G; Fan JA; Dominguez J; Gonzales E; Tutuc E; Brener I; Shvets G
    Nat Commun; 2014 May; 5():3892. PubMed ID: 24861488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A Double Split Ring Terahertz Filter on Ploymide Substrate].
    He J; Zhang TJ; Xiong W; Zhang B; He T; Shen JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3050-3. PubMed ID: 26978906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials.
    Engheta N
    Science; 2007 Sep; 317(5845):1698-702. PubMed ID: 17885123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Opt Express; 2014 Dec; 22(25):30889-98. PubMed ID: 25607038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.