These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 25399631)

  • 21. Broadband plasmon induced transparency in terahertz metamaterials.
    Zhu Z; Yang X; Gu J; Jiang J; Yue W; Tian Z; Tonouchi M; Han J; Zhang W
    Nanotechnology; 2013 May; 24(21):214003. PubMed ID: 23618809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials.
    Liu R; Cheng Q; Chin JY; Mock JJ; Cui TJ; Smith DR
    Opt Express; 2009 Nov; 17(23):21030-41. PubMed ID: 19997341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation.
    Li Y; Zhu L; Chen T
    Ultrasonics; 2017 Jan; 73():34-42. PubMed ID: 27597307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Implications of the causality principle for ultra chiral metamaterials.
    Gorkunov MV; Dmitrienko VE; Ezhov AA; Artemov VV; Rogov OY
    Sci Rep; 2015 Mar; 5():9273. PubMed ID: 25787007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties.
    Prinz VY; Naumova EV; Golod SV; Seleznev VA; Bocharov AA; Kubarev VV
    Sci Rep; 2017 Mar; 7():43334. PubMed ID: 28256587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Symmetry breaking and strong coupling in planar optical metamaterials.
    Aydin K; Pryce IM; Atwater HA
    Opt Express; 2010 Jun; 18(13):13407-17. PubMed ID: 20588471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.
    Liu PQ; Luxmoore IJ; Mikhailov SA; Savostianova NA; Valmorra F; Faist J; Nash GR
    Nat Commun; 2015 Nov; 6():8969. PubMed ID: 26584781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Broadband perfect transparency-to-absorption switching in tilted anisotropic metamaterials based on the anomalous Brewster effect.
    Ma Z; Fan H; Zhou H; Huang M; Luo J
    Opt Express; 2021 Nov; 29(24):39186-39199. PubMed ID: 34809288
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Broadband optical isolator based on helical metamaterials.
    Cao H; Yang Z; Zhao M; Wu L; Zhang P
    J Opt Soc Am A Opt Image Sci Vis; 2015 May; 32(5):778-81. PubMed ID: 26366900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inducing transparency with large magnetic response and group indices by hybrid dielectric metamaterials.
    Chen CK; Lai YC; Yang YH; Chen CY; Yen TJ
    Opt Express; 2012 Mar; 20(7):6952-60. PubMed ID: 22453373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical activity enhanced by strong inter-molecular coupling in planar chiral metamaterials.
    Kim TT; Oh SS; Park HS; Zhao R; Kim SH; Choi W; Min B; Hess O
    Sci Rep; 2014 Sep; 4():5864. PubMed ID: 25209452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tapered N-helical metamaterials with three-fold rotational symmetry as improved circular polarizers.
    Kaschke J; Blome M; Burger S; Wegener M
    Opt Express; 2014 Aug; 22(17):19936-46. PubMed ID: 25321204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures.
    Yang ZY; Zhao M; Lu PX; Lu YF
    Opt Lett; 2010 Aug; 35(15):2588-90. PubMed ID: 20680067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A d.c. magnetic metamaterial.
    Magnus F; Wood B; Moore J; Morrison K; Perkins G; Fyson J; Wiltshire MC; Caplin D; Cohen LF; Pendry JB
    Nat Mater; 2008 Apr; 7(4):295-7. PubMed ID: 18297077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fano resonances in THz metamaterials composed of continuous metallic wires and split ring resonators.
    Li Z; Cakmakyapan S; Butun B; Daskalaki C; Tzortzakis S; Yang X; Ozbay E
    Opt Express; 2014 Nov; 22(22):26572-84. PubMed ID: 25401808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optically controllable THz chiral metamaterials.
    Kenanakis G; Zhao R; Katsarakis N; Kafesaki M; Soukoulis CM; Economou EN
    Opt Express; 2014 May; 22(10):12149-59. PubMed ID: 24921336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical negative refraction in bulk metamaterials of nanowires.
    Yao J; Liu Z; Liu Y; Wang Y; Sun C; Bartal G; Stacy AM; Zhang X
    Science; 2008 Aug; 321(5891):930. PubMed ID: 18703734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical nanostructures in 2D for wide-diameter and broadband beam collimation.
    Clark J; Anguita JV; Chen Y; Silva SR
    Sci Rep; 2016 Jan; 6():18767. PubMed ID: 26732851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metasurfaces Atop Metamaterials: Surface Morphology Induces Linear Dichroism in Gyroid Optical Metamaterials.
    Dolan JA; Dehmel R; Demetriadou A; Gu Y; Wiesner U; Wilkinson TD; Gunkel I; Hess O; Baumberg JJ; Steiner U; Saba M; Wilts BD
    Adv Mater; 2019 Jan; 31(2):e1803478. PubMed ID: 30393994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A seismic metamaterial: The resonant metawedge.
    Colombi A; Colquitt D; Roux P; Guenneau S; Craster RV
    Sci Rep; 2016 Jun; 6():27717. PubMed ID: 27283587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.