BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 25399743)

  • 21. High-performance selective NO
    Khort A; Haiduk Y; Taratyn I; Moskovskikh D; Podbolotov K; Usenka A; Lapchuk N; Pankov V
    Sci Rep; 2023 May; 13(1):7834. PubMed ID: 37188838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis, Structure, and Ethanol Gas Sensing Properties of In2O3 Nanorods Decorated with Bi2O3 Nanoparticles.
    Park S; Kim S; Sun GJ; Lee C
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8138-46. PubMed ID: 25844852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor.
    Deng S; Tjoa V; Fan HM; Tan HR; Sayle DC; Olivo M; Mhaisalkar S; Wei J; Sow CH
    J Am Chem Soc; 2012 Mar; 134(10):4905-17. PubMed ID: 22332949
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simple Synthesis of Cobalt Carbonate Hydroxide Hydrate and Reduced Graphene Oxide Hybrid Structure for High-Performance Room Temperature NH₃ Sensor.
    Wang C; Wang H; Zhao D; Wei X; Li X; Liu W; Liu H
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30717175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemically modified graphene films for high-performance optical NO2 sensors.
    Xing F; Zhang S; Yang Y; Jiang W; Liu Z; Zhu S; Yuan X
    Analyst; 2016 Aug; 141(15):4725-32. PubMed ID: 27265308
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-Dimensional MoS
    Yang C; Wang Y; Wu Z; Zhang Z; Hu N; Peng C
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogenation-produced In
    Park BG; Reddeppa M; Kim YH; Kim SG; Kim MD
    Nanotechnology; 2020 Aug; 31(33):335503. PubMed ID: 32344382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ag-Modified 3D Reduced Graphene Oxide Aerogel-Based Sensor with an Embedded Microheater for a Fast Response and High-Sensitive Detection of NO
    Li Q; Chen D; Miao J; Lin S; Yu Z; Han Y; Yang Z; Zhi X; Cui D; An Z
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25243-25252. PubMed ID: 32391684
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-performance chemiresistor-type NH
    Tohidi S; Parhizkar M; Bidadi H; Mohamad-Rezaei R
    Nanotechnology; 2020 Oct; 31(41):415501. PubMed ID: 32554894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved Selectivity and Sensitivity of Gas Sensing Using a 3D Reduced Graphene Oxide Hydrogel with an Integrated Microheater.
    Wu J; Tao K; Miao J; Norford LK
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27502-10. PubMed ID: 26630364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchical NiO Cube/Nitrogen-Doped Reduced Graphene Oxide Composite with Enhanced H
    Yang M; Zhang X; Cheng X; Xu Y; Gao S; Zhao H; Huo L
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26293-26303. PubMed ID: 28703005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrasensitive chemical sensing through facile tuning defects and functional groups in reduced graphene oxide.
    Cui S; Pu H; Mattson EC; Wen Z; Chang J; Hou Y; Hirschmugl CJ; Chen J
    Anal Chem; 2014 Aug; 86(15):7516-22. PubMed ID: 24992696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent progress in applications of graphene oxide for gas sensing: A review.
    Toda K; Furue R; Hayami S
    Anal Chim Acta; 2015 Jun; 878():43-53. PubMed ID: 26002325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of Microstructure Effect on NO
    Wang Z; Han T; Fei T; Liu S; Zhang T
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41773-41783. PubMed ID: 30419750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Normal-pressure microwave rapid synthesis of hierarchical SnO₂@rGO nanostructures with superhigh surface areas as high-quality gas-sensing and electrochemical active materials.
    Yin L; Chen D; Cui X; Ge L; Yang J; Yu L; Zhang B; Zhang R; Shao G
    Nanoscale; 2014 Nov; 6(22):13690-700. PubMed ID: 25277111
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tunable NH
    Liu N; Li Y; Li Y; Cao L; Nan N; Li C; Yu L
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14355-14364. PubMed ID: 33749237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CTAB Enhanced Room-Temperature Detection of NO
    Li W; Li H; Qian R; Zhuo S; Ju P; Chen Q
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of Cu
    Huang M; Wang Y; Ying S; Wu Z; Liu W; Chen D; Peng C
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature.
    Huang L; Wang Z; Zhang J; Pu J; Lin Y; Xu S; Shen L; Chen Q; Shi W
    ACS Appl Mater Interfaces; 2014 May; 6(10):7426-33. PubMed ID: 24806241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Realizing Synergy between In
    Shanmugasundaram A; Gundimeda V; Hou T; Lee DW
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31728-31740. PubMed ID: 28875705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.