BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25399805)

  • 1. The pepsin digestibility of thermal gel products made from white croaker (Pennahia argentata) muscle in associating with myosin polymerization levels.
    Ueki N; Wan J; Watabe S
    J Food Sci; 2014 Dec; 79(12):C2427-33. PubMed ID: 25399805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of endogenous proteases within abdominal muscle parts on the rheological properties of thermally induced gels from white croaker (Pennahia argentata).
    Ueki N; Matsuoka Y; Wan J; Watabe S
    Food Chem; 2018 Dec; 268():498-503. PubMed ID: 30064790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deterioration of white croaker (Pennahia argentata) meat thermally-induced gel products caused by proteolytic enzymes in the contaminated intestine and kidney.
    Ueki N; Wan J; Watabe S
    Food Chem; 2016 May; 199():416-22. PubMed ID: 26775990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study on protein cross-linking and gel enhancing effect of microbial transglutaminase on surimi from different fish.
    Chanarat S; Benjakul S; H-Kittikun A
    J Sci Food Agric; 2012 Mar; 92(4):844-52. PubMed ID: 22413145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of KBrO3 on gel-forming properties of walleye pollack surimi through setting with or without transglutaminase inhibitor.
    Banlue K; Morioka K; Itoh Y
    Pak J Biol Sci; 2010 Jan; 13(1):1-8. PubMed ID: 20415146
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Fang M; Xiong S; Jiang Y; Yin T; Hu Y; Liu R; You J
    J Agric Food Chem; 2020 Aug; 68(31):8413-8430. PubMed ID: 32663001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of preheating temperature on the microstructure of walleye pollack surimi gels under the inhibition of the polymerisation and degradation of myosin heavy chain.
    Hossain MI; Morioka K; Shikha FH; Itoh Y
    J Sci Food Agric; 2011 Jan; 91(2):247-52. PubMed ID: 20945511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of gelling properties of lizardfish mince as influenced by microbial transglutaminase and fish freshness.
    Benjakul S; Phatcharat S; Tammatinna A; Visessanguan W; Kishimura H
    J Food Sci; 2008 Aug; 73(6):S239-46. PubMed ID: 19241566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheological properties of fast skeletal myosin rod and light meromyosin from walleye pollack and white croaker: contribution of myosin fragments to thermal gel formation.
    Fukushima H; Satoh Y; Yoon SH; Togashi M; Nakaya M; Watabe S
    J Agric Food Chem; 2005 Nov; 53(23):9193-8. PubMed ID: 16277422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of salt and temperature in myosin polymerization during surimi gelation.
    Núñez-Flores R; Cando D; Borderías AJ; Moreno HM
    Food Chem; 2018 Jan; 239():1226-1234. PubMed ID: 28873544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel soft surimi gel with functionality prepared using alcalase for people suffering from dysphagia.
    Okita A; Takahashi K; Itakura M; Horio A; Yamamoto R; Nakamura Y; Osako K
    Food Chem; 2021 May; 344():128641. PubMed ID: 33229153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteinase inhibitory activity of sarcoplasmic proteins from threadfin bream (Nemipterus spp.).
    Piyadhammaviboon P; Yongsawatdigul J
    J Sci Food Agric; 2010 Jan; 90(2):291-8. PubMed ID: 20355045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Gel Degradation (Modori) in Sturgeon (Acipenseridae) Surimi Gels.
    Tang S; Feng G; Gao R; Ren J; Zhou X; Wang H; Xu H; Zhao Y; Zeng M
    J Food Sci; 2019 Dec; 84(12):3601-3607. PubMed ID: 31730276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of the Gelation Properties of Surimi from Yellowtail Seabream (Parargyrops edita, Sparidae) with Chinese Oak Silkworm Pupa, Antheraea pernyi.
    Zhu J; Fan D; Zhao J; Zhang H; Huang J; Zhou W; Zhang W; Chen W
    J Food Sci; 2016 Feb; 81(2):E396-403. PubMed ID: 26709730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolysis and gelation of fish proteins under ohmic heating.
    Park JW; Yongsawatdigul J; Kolbe E
    Adv Exp Med Biol; 1998; 434():25-34. PubMed ID: 9598187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Participation of cysteine protease cathepsin L in the gel disintegration of red bulleye (Priacanthus macracanthus) surimi gel paste.
    Hu Y; Morioka K; Itoh Y
    J Sci Food Agric; 2010 Feb; 90(3):370-5. PubMed ID: 20355055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. γ-PGA and MTGase improve the formation of ε-(γ-glutamyl) lysine cross-links within hairtail (Trichiurus haumela) surimi protein.
    Hu Y; Shao Y; Wu C; Yuan C; Ishimura G; Liu W; Chen S
    Food Chem; 2018 Mar; 242():330-337. PubMed ID: 29037697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of low-salt surimi gelation induced by microwave heating combined with l-arginine and transglutaminase: On the basis of molecular docking between l-arginine and myosin heavy chain.
    Shi T; Wang X; Li M; Xiong Z; McClements DJ; Bao Y; Song T; Li J; Yuan L; Jin W; Gao R
    Food Chem; 2022 Oct; 391():133184. PubMed ID: 35640331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of setting temperature on glucono-δ-lactone-induced gelation of silver carp surimi.
    Weng W; Zheng W
    J Sci Food Agric; 2015 May; 95(7):1528-34. PubMed ID: 25131135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signaling via the angiotensin-converting enzyme results in the phosphorylation of the nonmuscle myosin heavy chain IIA.
    Kohlstedt K; Kellner R; Busse R; Fleming I
    Mol Pharmacol; 2006 Jan; 69(1):19-26. PubMed ID: 16186248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.