These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25399871)

  • 1. Spatial mapping of multimode Brownian motions in high-frequency silicon carbide microdisk resonators.
    Wang Z; Lee J; Feng PX
    Nat Commun; 2014 Nov; 5():5158. PubMed ID: 25399871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subwavelength silicon microcavities.
    Shainline J; Elston S; Liu Z; Fernandes G; Zia R; Xu J
    Opt Express; 2009 Dec; 17(25):23323-31. PubMed ID: 20052259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrawide Band Gap β-Ga
    Zheng XQ; Lee J; Rafique S; Han L; Zorman CA; Zhao H; Feng PX
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43090-43097. PubMed ID: 29115818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths.
    Shah Hosseini E; Yegnanarayanan S; Atabaki AH; Soltani M; Adibi A
    Opt Express; 2010 Feb; 18(3):2127-36. PubMed ID: 20174041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible and near-infrared microdisk resonators on a 4H-silicon-carbide-on-insulator platform.
    Wang C; Shen C; Yi A; Yang S; Zhou L; Zhu Y; Huang K; Song S; Zhou M; Zhang J; Ou X
    Opt Lett; 2021 Jun; 46(12):2952-2955. PubMed ID: 34129582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon carbide double-microdisk resonator.
    Lu X; Lee JY; Rogers SD; Lin Q
    Opt Lett; 2019 Sep; 44(17):4295-4298. PubMed ID: 31465386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators.
    Liu Y; Davanço M; Aksyuk V; Srinivasan K
    Phys Rev Lett; 2013 May; 110(22):223603. PubMed ID: 23767723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic actuation of silicon optomechanical resonators.
    Sridaran S; Bhave SA
    Opt Express; 2011 May; 19(10):9020-6. PubMed ID: 21643155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-sensitivity linear piezoresistive transduction for nanomechanical beam resonators.
    Sansa M; Fernández-Regúlez M; Llobet J; San Paulo Á; Pérez-Murano F
    Nat Commun; 2014 Jul; 5():4313. PubMed ID: 25000256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabry-Perot interferometric calibration of van der Waals material-based nanomechanical resonators.
    Callera Aguila MA; Esmenda JC; Wang JY; Lee TH; Yang CY; Lin KH; Chang-Liao KS; Kafanov S; Pashkin YA; Chen CD
    Nanoscale Adv; 2022 Jan; 4(2):502-509. PubMed ID: 36132699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics.
    Chen R; Gupta S; Huang YC; Huo Y; Rudy CW; Sanchez E; Kim Y; Kamins TI; Saraswat KC; Harris JS
    Nano Lett; 2014 Jan; 14(1):37-43. PubMed ID: 24299070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared III-nitride-on-silicon nanophotonic platform with microdisk resonators.
    Roland I; Zeng Y; Checoury X; El Kurdi M; Sauvage S; Brimont C; Guillet T; Gayral B; Gromovyi M; Duboz JY; Semond F; de Micheli MP; Boucaud P
    Opt Express; 2016 May; 24(9):9602-10. PubMed ID: 27137573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periodic and non-periodic frequency selection in an erbium doped fiber laser by silica microdisk optical cavity filters.
    Bergeron S; Saïdi S; Peter YA
    Opt Express; 2010 Aug; 18(16):16797-804. PubMed ID: 20721071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdisk resonators with lithium-niobate film on silicon substrate.
    Zhang L; Zheng D; Li W; Bo F; Gao F; Kong Y; Zhang G; Xu J
    Opt Express; 2019 Nov; 27(23):33662-33669. PubMed ID: 31878429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption.
    Bartsch ST; Lovera A; Grogg D; Ionescu AM
    ACS Nano; 2012 Jan; 6(1):256-64. PubMed ID: 22148851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monolithic integration of a nanomechanical resonator to an optical microdisk cavity.
    Basarir O; Bramhavar S; Ekinci KL
    Opt Express; 2012 Feb; 20(4):4272-9. PubMed ID: 22418186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Q and highly reproducible microdisks and microlasers.
    Zhang N; Wang Y; Sun W; Liu S; Huang C; Jiang X; Xiao M; Xiao S; Song Q
    Nanoscale; 2018 Jan; 10(4):2045-2051. PubMed ID: 29323392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adiabatic microring modulators.
    Biberman A; Timurdogan E; Zortman WA; Trotter DC; Watts MR
    Opt Express; 2012 Dec; 20(28):29223-36. PubMed ID: 23388748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Fabrication of Capacitive Silicon Nanomechanical Resonators with Selective Vibration of a High-Order Mode.
    Toan NV; Shimazaki T; Inomata N; Song Y; Ono T
    Micromachines (Basel); 2017 Oct; 8(10):. PubMed ID: 30400502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies.
    Wang Z; Jia H; Zheng X; Yang R; Wang Z; Ye GJ; Chen XH; Shan J; Feng PX
    Nanoscale; 2015 Jan; 7(3):877-84. PubMed ID: 25385657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.