These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25399925)

  • 1. Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision.
    Cheney F; Thibos L; Bradley A
    Ophthalmic Physiol Opt; 2015 Jan; 35(1):70-80. PubMed ID: 25399925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Choice of Grating Orientation for Evaluation of Peripheral Vision.
    Venkataraman AP; Winter S; Rosén R; Lundström L
    Optom Vis Sci; 2016 Jun; 93(6):567-74. PubMed ID: 26889822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors.
    Anderson SJ; Mullen KT; Hess RF
    J Physiol; 1991 Oct; 442():47-64. PubMed ID: 1798037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ocular transverse chromatic aberration on peripheral word identification.
    Yang SN; Tai YC; Laukkanen H; Sheedy JE
    Vision Res; 2011 Nov; 51(21-22):2273-81. PubMed ID: 21945482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transverse chromatic aberration across the visual field of the human eye.
    Winter S; Sabesan R; Tiruveedhula P; Privitera C; Unsbo P; Lundström L; Roorda A
    J Vis; 2016 Nov; 16(14):9. PubMed ID: 27832270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of colour adaptation and stimulus size on the detection of chromatic deviations from achromatic as a function of eccentricity in man.
    Iivanainen A; Rovamo J
    Ophthalmic Physiol Opt; 1994 Oct; 14(4):408-12. PubMed ID: 7845700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of stimulus intensity on the sizes of chromatic perceptive fields.
    Troup LJ; Pitts MA; Volbrecht VJ; Nerger JL
    J Opt Soc Am A Opt Image Sci Vis; 2005 Oct; 22(10):2137-42. PubMed ID: 16277283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interferometric measurement of visual acuity and the effect of ocular chromatic aberration.
    Thibos LN; Bradley A; Still DL
    Appl Opt; 1991 Jun; 30(16):2079-87. PubMed ID: 20700182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity to spatiotemporal colour contrast in the peripheral visual field.
    Noorlander C; Koenderink JJ; den Ouden RJ; Edens BW
    Vision Res; 1983; 23(1):1-11. PubMed ID: 6868374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of chromatic induction by neighboring images.
    Harrar M; Viénot F
    J Opt Soc Am A Opt Image Sci Vis; 2005 Oct; 22(10):2197-206. PubMed ID: 16277288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Color stimuli perception in presence of light scattering.
    Ozolinsh M; Colomb M; Ikaunieks G; Karitans V
    Vis Neurosci; 2006; 23(3-4):597-601. PubMed ID: 16962002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolution of gratings oriented along and across meridians in peripheral vision.
    Rovamo J; Virsu V; Laurinen P; Hyvärinen L
    Invest Ophthalmol Vis Sci; 1982 Nov; 23(5):666-70. PubMed ID: 7129811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of chromatic deviations from white across the human visual field.
    Rovamo J; Iivanainen A
    Vision Res; 1991; 31(12):2227-34. PubMed ID: 1771802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perception of green and red under chromatic adaptation: the effects of stimulus size and eccentricity.
    Rovamo J; Iivanainen A
    Optom Vis Sci; 1994 Aug; 71(8):492-501. PubMed ID: 7970565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achromatic parvocellular contrast gain in normal and color defective observers: Implications for the evolution of color vision.
    Lutze M; Pokorny J; Smith VC
    Vis Neurosci; 2006; 23(3-4):611-6. PubMed ID: 16962004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation selectivity in luminance and color vision assessed using 2-d band-pass filtered spatial noise.
    Beaudot WH; Mullen KT
    Vision Res; 2005 Mar; 45(6):687-96. PubMed ID: 15639495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator.
    Rocha KM; Vabre L; Chateau N; Krueger RR
    J Refract Surg; 2010 Jan; 26(1):52-6. PubMed ID: 20199013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation mechanisms, eccentricity profiles, and clinical implementation of red-on-white perimetry.
    Zele AJ; Dang TM; O'Loughlin RK; Guymer RH; Harper A; Vingrys AJ
    Optom Vis Sci; 2008 May; 85(5):309-17. PubMed ID: 18451735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colour recognition at large visual eccentricities in normal observers and patients with low vision.
    Naïli F; Despretz P; Boucart M
    Neuroreport; 2006 Oct; 17(15):1571-4. PubMed ID: 17001270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of chromatic mechanisms on the detection of mesopic incremental targets at different eccentricities.
    Bodrogi P; Vas Z; Haferkemper N; Várady G; Schiller C; Khanh TQ; Schanda J
    Ophthalmic Physiol Opt; 2010 Jan; 30(1):85-94. PubMed ID: 20444113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.