BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 25400428)

  • 1. Alpha-2-macroglobulin as a radioprotective agent: a review.
    Chen X; Kong X; Zhang Z; Chen W; Chen J; Li H; Cao W; Ge Y; Fang S
    Chin J Cancer Res; 2014 Oct; 26(5):611-21. PubMed ID: 25400428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radioprotective potential of mint: a brief review.
    Baliga MS; Rao S
    J Cancer Res Ther; 2010; 6(3):255-62. PubMed ID: 21119249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The acute-phase protein alpha2-macroglobulin plays an important role in radioprotection in the rat.
    Mihailović M; Dobrić S; Poznanović G; Petrović M; Uskoković A; Arambasić J; Bogojević B
    Shock; 2009 Jun; 31(6):607-14. PubMed ID: 18838941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indian Indigenous Fruits as Radioprotective Agents: Past, Present and Future.
    Kudva AK; Raghu SV; Rao S; Venkatesh P; Hegde SK; D'souza RK; Baliga-Rao MP; Simon P; Baliga MS
    Anticancer Agents Med Chem; 2022; 22(1):53-63. PubMed ID: 34229590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Administration of rat acute-phase protein α(2)-macroglobulin before total-body irradiation initiates cytoprotective mechanisms in the liver.
    Bogojević D; Poznanović G; Grdović N; Grigorov I; Vidaković M; Dinić S; Mihailović M
    Radiat Environ Biophys; 2011 Mar; 50(1):167-79. PubMed ID: 20848291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protective role of α2-macroglobulin against jaw osteoradionecrosis in a preclinical rat model.
    Li J; Kong XB; Chen XY; Zhong WZ; Chen JY; Liu Y; Yin P; Fang SL
    J Oral Pathol Med; 2019 Feb; 48(2):166-173. PubMed ID: 30506608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prevention from radiation damage by natural products.
    Fischer N; Seo EJ; Efferth T
    Phytomedicine; 2018 Aug; 47():192-200. PubMed ID: 30166104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-protective effects of fullerenol C60(OH)24 and amifostine in irradiated rats.
    Trajković S; Dobrić S; Jaćević V; Dragojević-Simić V; Milovanović Z; Dordević A
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):39-43. PubMed ID: 17317115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rat acute-phase protein α2-macroglobulin plays a central role in amifostine-mediated radioprotection.
    Mirjana M; Goran P; Nevena G; Melita V; Svetlana D; Ilijana G; Desanka B
    J Radiol Prot; 2010 Sep; 30(3):567-83. PubMed ID: 20826884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The radioprotective effect of alpha2-macroglobulin: a morphological study of rat liver.
    Mihailović M; Milosević V; Grigorov I; Poznanović G; Ivanović-Matić S; Grdović N; Bogojević D
    Med Sci Monit; 2009 Jul; 15(7):BR188-93. PubMed ID: 19564818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective effects of α‑2‑macroglobulin on human bone marrow mesenchymal stem cells in radiation injury.
    Liu Y; Cao W; Kong X; Li J; Chen X; Ge Y; Zhong W; Fang S
    Mol Med Rep; 2018 Nov; 18(5):4219-4228. PubMed ID: 30221711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. alpha2-Macroglobulin is mainly produced by cancer cells and not by hepatocytes in rats with colon carcinoma metastases in liver.
    Smorenburg SM; Griffini P; Tiggelman AB; Moorman AF; Boers W; Van Noorden JF
    Hepatology; 1996 Mar; 23(3):560-70. PubMed ID: 8617438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforming growth factor-beta-induced collagen synthesis by human liver myofibroblasts is inhibited by alpha2-macroglobulin.
    Tiggelman AM; Linthorst C; Boers W; Brand HS; Chamuleau RA
    J Hepatol; 1997 Jun; 26(6):1220-8. PubMed ID: 9210607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Chemical radioprotectors].
    Ando K
    Gan No Rinsho; 1987 Oct; 33(13):1679-83. PubMed ID: 2826838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Ascorbic Acid on the Structure and Function of Alpha-2- macroglobulin: Investigations using Spectroscopic and Thermodynamic Techniques.
    Ali SS; Zia MK; Siddiqui T; Ahsan H; Khan FH
    Protein Pept Lett; 2020; 27(3):201-209. PubMed ID: 31577195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radioprotective Agents: Strategies and Translational Advances.
    Kamran MZ; Ranjan A; Kaur N; Sur S; Tandon V
    Med Res Rev; 2016 May; 36(3):461-93. PubMed ID: 26807693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of radioprotection in the prevention of radiation-induced craniofacial bone growth inhibition.
    Forrest CR; O'Donovan DA; Yeung I; Zeman V; La Scala G; Neligan PC; Pang CY
    Plast Reconstr Surg; 2002 Apr; 109(4):1311-23; discussion 1324. PubMed ID: 11964983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities.
    Zhang Y; Huang Y; Li Z; Wu H; Zou B; Xu Y
    Cancers (Basel); 2023 Jul; 15(14):. PubMed ID: 37509245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radioprotective Role of Natural Polyphenols: From Sources to Mechanisms.
    Adnan M; Rasul A; Shah MA; Hussain G; Asrar M; Riaz A; Sarfraz I; Hussain A; Khorsandi K; Lai NS; Hussain SM
    Anticancer Agents Med Chem; 2022; 22(1):30-39. PubMed ID: 33874875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interleukin-4 and IL-10 bind covalently to activated human alpha2-macroglobulin by a mechanism that requires Cys949.
    Garber TR; Gonias SL; Webb DJ
    J Interferon Cytokine Res; 2000 Feb; 20(2):125-31. PubMed ID: 10714547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.