These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 25400531)

  • 1. Subglottal Impedance-Based Inverse Filtering of Voiced Sounds Using Neck Surface Acceleration.
    Zañartu M; Ho JC; Mehta DD; Hillman RE; Wodicka GR
    IEEE Trans Audio Speech Lang Process; 2013 Sep; 21(9):1929-1939. PubMed ID: 25400531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glottal Aerodynamics Estimated From Neck-Surface Vibration in Women With Phonotraumatic and Nonphonotraumatic Vocal Hyperfunction.
    Espinoza VM; Mehta DD; Van Stan JH; Hillman RE; Zañartu M
    J Speech Lang Hear Res; 2020 Sep; 63(9):2861-2869. PubMed ID: 32755502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model.
    Ibarra EJ; Parra JA; Alzamendi GA; Cortés JP; Espinoza VM; Mehta DD; Hillman RE; Zañartu M
    Front Physiol; 2021; 12():732244. PubMed ID: 34539451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glottal Airflow Estimation using Neck Surface Acceleration and Low-Order Kalman Smoothing.
    Morales A; Yuz JI; Cortés JP; Fontanet JG; Zañartu M
    IEEE/ACM Trans Audio Speech Lang Process; 2023; 31():2055-2066. PubMed ID: 38130818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Glottal Inverse Filtering Algorithms Using a Physiologically Based Articulatory Speech Synthesizer.
    Chien YR; Mehta DD; Guðnason J; Zañartu M; Quatieri TF
    IEEE/ACM Trans Audio Speech Lang Process; 2017 Aug; 25(8):1718-1730. PubMed ID: 34268444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vocal Tract and Subglottal Impedance in High Performance Singing: A Case Study.
    Hoyer P; Riedler M; Unterhofer C; Graf S
    J Voice; 2022 Feb; ():. PubMed ID: 35232632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationships between vocal function measures derived from an acoustic microphone and a subglottal neck-surface accelerometer.
    Mehta DD; Van Stan JH; Hillman RE
    IEEE/ACM Trans Audio Speech Lang Process; 2016 Apr; 24(4):659-668. PubMed ID: 27066520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian estimation of vocal function measures using laryngeal high-speed videoendoscopy and glottal airflow estimates: An in vivo case study.
    Alzamendi GA; Manríquez R; Hadwin PJ; Deng JJ; Peterson SD; Erath BD; Mehta DD; Hillman RE; Zañartu M
    J Acoust Soc Am; 2020 May; 147(5):EL434. PubMed ID: 32486812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of voice quality using neck-surface acceleration: Comparison with glottal flow and radiated sound.
    Włodarczak M; Ludusan B; Sundberg J; Heldner M
    J Voice; 2022 Aug; ():. PubMed ID: 36028369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Glottal Inverse Filtering in the Presence of Source-Filter Interaction.
    Palaparthi A; Titze IR
    Speech Commun; 2020 Oct; 123():98-108. PubMed ID: 32921855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Subglottal Pressure From Neck Surface Vibration in Patients With Voice Disorders.
    Marks KL; Lin JZ; Burns JA; Hron TA; Hillman RE; Mehta DD
    J Speech Lang Hear Res; 2020 Jul; 63(7):2202-2218. PubMed ID: 32610028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ON THE SINGLE-MASS MODEL OF THE VOCAL FOLDS.
    Howe MS; McGowan RS
    Fluid Dyn Res; 2010 Jan; 42(1):15001. PubMed ID: 20419082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating Subglottal Pressure From Neck-Surface Acceleration During Normal Voice Production.
    Fryd AS; Van Stan JH; Hillman RE; Mehta DD
    J Speech Lang Hear Res; 2016 Dec; 59(6):1335-1345. PubMed ID: 27959974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerodynamic Parameters in Byzantine Chant Voices: Comparisons Across Pitch and Loudness.
    Delviniotis DS; Theodoridis S; Delvinioti N
    J Voice; 2024 Jan; ():. PubMed ID: 38246827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ANALYSIS OF FLOW-STRUCTURE COUPLING IN A MECHANICAL MODEL OF THE VOCAL FOLDS AND THE SUBGLOTTAL SYSTEM.
    Howe MS; McGowan RS
    J Fluids Struct; 2009 Nov; 25(8):1299-1317. PubMed ID: 20161450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-based fluid-structure model of the vocal folds.
    Mora LA; Ramirez H; Yuz JI; Le Gorec Y; Zañartu M
    IMA J Math Control Inf; 2021 Jun; 38(2):466-492. PubMed ID: 34149312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ON THE GENERALISED FANT EQUATION.
    Howe MS; McGowan RS
    J Sound Vib; 2011 Jun; 330(13):3123-3140. PubMed ID: 21603054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PRODUCTION OF SOUND BY UNSTEADY THROTTLING OF FLOW INTO A RESONANT CAVITY, WITH APPLICATION TO VOICED SPEECH.
    Howe MS; McGowan RS
    J Fluid Mech; 2011 Apr; 672():428-450. PubMed ID: 21666824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous-Time Model Identification of the Subglottal System.
    Fontanet JG; Yuz JI; Garnier H; Morales A; Cortés JP; Zañartu M
    Biomed Signal Process Control; 2024 Sep; 95(Pt A):. PubMed ID: 38799405
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.