BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 25400547)

  • 1. Translating neuronal activity at the synapse: presynaptic calcium sensors in short-term plasticity.
    de Jong AP; Fioravante D
    Front Cell Neurosci; 2014; 8():356. PubMed ID: 25400547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein kinase C is a calcium sensor for presynaptic short-term plasticity.
    Fioravante D; Chu Y; de Jong AP; Leitges M; Kaeser PS; Regehr WG
    Elife; 2014 Aug; 3():e03011. PubMed ID: 25097249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of synaptotagmin-1 controls a post-priming step in PKC-dependent presynaptic plasticity.
    de Jong AP; Meijer M; Saarloos I; Cornelisse LN; Toonen RF; Sørensen JB; Verhage M
    Proc Natl Acad Sci U S A; 2016 May; 113(18):5095-100. PubMed ID: 27091977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-Dependent Protein Kinase C Is Not Required for Post-Tetanic Potentiation at the Hippocampal CA3 to CA1 Synapse.
    Wang CC; Weyrer C; Paturu M; Fioravante D; Regehr WG
    J Neurosci; 2016 Jun; 36(24):6393-402. PubMed ID: 27307229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel form of presynaptic CaMKII-dependent short-term potentiation between Lymnaea neurons.
    Luk CC; Naruo H; Prince D; Hassan A; Doran SA; Goldberg JI; Syed NI
    Eur J Neurosci; 2011 Aug; 34(4):569-77. PubMed ID: 21749498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of calcium-calmodulin kinase II in three forms of synaptic plasticity.
    Stevens CF; Tonegawa S; Wang Y
    Curr Biol; 1994 Aug; 4(8):687-93. PubMed ID: 7953554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of Excitation/Inhibition Balance in a Hippocampal Circuit by Calcium Sensor Protein Regulation of Presynaptic Calcium Channels.
    Nanou E; Lee A; Catterall WA
    J Neurosci; 2018 May; 38(18):4430-4440. PubMed ID: 29654190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apparent calcium dependence of vesicle recruitment.
    Ritzau-Jost A; Jablonski L; Viotti J; Lipstein N; Eilers J; Hallermann S
    J Physiol; 2018 Oct; 596(19):4693-4707. PubMed ID: 29928766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-term synaptic plasticity.
    Zucker RS; Regehr WG
    Annu Rev Physiol; 2002; 64():355-405. PubMed ID: 11826273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic control of synaptic vesicle replenishment and short-term plasticity by Ca(2+)-calmodulin-Munc13-1 signaling.
    Lipstein N; Sakaba T; Cooper BH; Lin KH; Strenzke N; Ashery U; Rhee JS; Taschenberger H; Neher E; Brose N
    Neuron; 2013 Jul; 79(1):82-96. PubMed ID: 23770256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term plasticity at primary afferent synapse in rat spinal dorsal horn and its biological function.
    Wan YH; Jian Z; Wang WT; Xu H; Hu SJ; Ju G
    Neurosignals; 2006-2007; 15(2):74-90. PubMed ID: 16864969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the role of the Synaptotagmin family as calcium sensors in facilitation and asynchronous neurotransmitter release.
    Saraswati S; Adolfsen B; Littleton JT
    Proc Natl Acad Sci U S A; 2007 Aug; 104(35):14122-7. PubMed ID: 17709738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target-cell-specific short-term plasticity in local circuits.
    Blackman AV; Abrahamsson T; Costa RP; Lalanne T; Sjöström PJ
    Front Synaptic Neurosci; 2013 Dec; 5():11. PubMed ID: 24367330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+-dependent binding of calcium-binding protein 1 to presynaptic group III metabotropic glutamate receptors and blockage by phosphorylation of the receptors.
    Nakajima Y
    Biochem Biophys Res Commun; 2011 Sep; 412(4):602-5. PubMed ID: 21855531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposite Roles in Short-Term Plasticity for N-Type and P/Q-Type Voltage-Dependent Calcium Channels in GABAergic Neuronal Connections in the Rat Cerebral Cortex.
    Yamamoto K; Kobayashi M
    J Neurosci; 2018 Nov; 38(46):9814-9828. PubMed ID: 30249804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium and transmitter release.
    Zucker RS
    J Physiol Paris; 1993; 87(1):25-36. PubMed ID: 7905762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of presynaptic Ca(V)2.1 channels by Ca2+ sensor proteins mediates short-term synaptic plasticity.
    Mochida S; Few AP; Scheuer T; Catterall WA
    Neuron; 2008 Jan; 57(2):210-6. PubMed ID: 18215619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of Munc13-1 C
    Xu J; Camacho M; Xu Y; Esser V; Liu X; Trimbuch T; Pan YZ; Ma C; Tomchick DR; Rosenmund C; Rizo J
    Elife; 2017 Feb; 6():. PubMed ID: 28177287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Update to Calcium Binding Proteins.
    Elíes J; Yáñez M; Pereira TMC; Gil-Longo J; MacDougall DA; Campos-Toimil M
    Adv Exp Med Biol; 2020; 1131():183-213. PubMed ID: 31646511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to long-term potentiation and spatial learning.
    Nanou E; Scheuer T; Catterall WA
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13209-13214. PubMed ID: 27799552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.