These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 25400626)

  • 1. DNA polymerases engineered by directed evolution to incorporate non-standard nucleotides.
    Laos R; Thomson JM; Benner SA
    Front Microbiol; 2014; 5():565. PubMed ID: 25400626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assays To Detect the Formation of Triphosphates of Unnatural Nucleotides: Application to Escherichia coli Nucleoside Diphosphate Kinase.
    Matsuura MF; Shaw RW; Moses JD; Kim HJ; Kim MJ; Kim MS; Hoshika S; Karalkar N; Benner SA
    ACS Synth Biol; 2016 Mar; 5(3):234-40. PubMed ID: 26829203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the substrate repertoire of a DNA polymerase by directed evolution.
    Fa M; Radeghieri A; Henry AA; Romesberg FE
    J Am Chem Soc; 2004 Feb; 126(6):1748-54. PubMed ID: 14871106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed evolution of polymerases to accept nucleotides with nonstandard hydrogen bond patterns.
    Laos R; Shaw R; Leal NA; Gaucher E; Benner S
    Biochemistry; 2013 Aug; 52(31):5288-94. PubMed ID: 23815560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro screening technique for DNA polymerases that can incorporate modified nucleotides. Pseudo-thymidine as a substrate for thermostable polymerases.
    Lutz S; Burgstaller P; Benner SA
    Nucleic Acids Res; 1999 Jul; 27(13):2792-8. PubMed ID: 10373598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic Biology Pathway to Nucleoside Triphosphates for Expanded Genetic Alphabets.
    Li Y; Abraham C; Suslov O; Yaren O; Shaw RW; Kim MJ; Wan S; Marliere P; Benner SA
    ACS Synth Biol; 2023 Jun; 12(6):1772-1781. PubMed ID: 37227319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA polymerases and biotechnological applications.
    Aschenbrenner J; Marx A
    Curr Opin Biotechnol; 2017 Dec; 48():187-195. PubMed ID: 28618333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building better polymerases: Engineering the replication of expanded genetic alphabets.
    Ouaray Z; Benner SA; Georgiadis MM; Richards NGJ
    J Biol Chem; 2020 Dec; 295(50):17046-17059. PubMed ID: 33004440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of DNA polymerases with novel activities.
    Henry AA; Romesberg FE
    Curr Opin Biotechnol; 2005 Aug; 16(4):370-7. PubMed ID: 16006114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases.
    Hottin A; Marx A
    Acc Chem Res; 2016 Mar; 49(3):418-27. PubMed ID: 26947566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic alphabet expansion transcription generating functional RNA molecules containing a five-letter alphabet including modified unnatural and natural base nucleotides by thermostable T7 RNA polymerase variants.
    Kimoto M; Meyer AJ; Hirao I; Ellington AD
    Chem Commun (Camb); 2017 Nov; 53(91):12309-12312. PubMed ID: 29094732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies.
    Hirao I; Kimoto M; Yamashige R
    Acc Chem Res; 2012 Dec; 45(12):2055-65. PubMed ID: 22263525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed evolution of novel polymerases.
    Holmberg RC; Henry AA; Romesberg FE
    Biomol Eng; 2005 Jun; 22(1-3):39-49. PubMed ID: 15857782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic nucleotides as probes of DNA polymerase specificity.
    Walsh JM; Beuning PJ
    J Nucleic Acids; 2012; 2012():530963. PubMed ID: 22720133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generic expansion of the substrate spectrum of a DNA polymerase by directed evolution.
    Ghadessy FJ; Ramsay N; Boudsocq F; Loakes D; Brown A; Iwai S; Vaisman A; Woodgate R; Holliger P
    Nat Biotechnol; 2004 Jun; 22(6):755-9. PubMed ID: 15156154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerase evolution: efforts toward expansion of the genetic code.
    Leconte AM; Chen L; Romesberg FE
    J Am Chem Soc; 2005 Sep; 127(36):12470-1. PubMed ID: 16144377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of sequence variants via accelerated molecular evolution methods.
    Fu M; Zhang X; Lai X; Wu X; Feng F; Peng J; Zhong H; Zhang Y; Wang Y; Zhou Q; Wang S; Chen L; He Z; Gao Y; Ma X; He R; Liu Q
    Recent Pat DNA Gene Seq; 2013 Aug; 7(2):144-56. PubMed ID: 23388030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed evolution of polymerase function by compartmentalized self-replication.
    Ghadessy FJ; Ong JL; Holliger P
    Proc Natl Acad Sci U S A; 2001 Apr; 98(8):4552-7. PubMed ID: 11274352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A semisynthetic organism engineered for the stable expansion of the genetic alphabet.
    Zhang Y; Lamb BM; Feldman AW; Zhou AX; Lavergne T; Li L; Romesberg FE
    Proc Natl Acad Sci U S A; 2017 Feb; 114(6):1317-1322. PubMed ID: 28115716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleoside 5'-triphosphates with modified sugars as substrates for DNA polymerases.
    Chidgeavadze ZG; Beabealashvilli RSh; Krayevsky AA; Kukhanova MK
    Biochim Biophys Acta; 1986 Nov; 868(2-3):145-52. PubMed ID: 3021225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.