These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25400650)

  • 1. Damaged-self recognition in common bean (Phaseolus vulgaris) shows taxonomic specificity and triggers signaling via reactive oxygen species (ROS).
    Duran-Flores D; Heil M
    Front Plant Sci; 2014; 5():585. PubMed ID: 25400650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How plants sense wounds: damaged-self recognition is based on plant-derived elicitors and induces octadecanoid signaling.
    Heil M; Ibarra-Laclette E; Adame-Álvarez RM; Martínez O; Ramirez-Chávez E; Molina-Torres J; Herrera-Estrella L
    PLoS One; 2012; 7(2):e30537. PubMed ID: 22347382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent.
    Radhika V; Kost C; Mithöfer A; Boland W
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17228-33. PubMed ID: 20855624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular self-DNA as a damage-associated molecular pattern (DAMP) that triggers self-specific immunity induction in plants.
    Duran-Flores D; Heil M
    Brain Behav Immun; 2018 Aug; 72():78-88. PubMed ID: 29042243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The defensive role of volatile emission and extrafloral nectar secretion for lima bean in nature.
    Kost C; Heil M
    J Chem Ecol; 2008 Jan; 34(1):1-13. PubMed ID: 18071821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative effects of leaf area removal on indirect defense of lima bean (Phaseolus lunatus) in nature.
    Ballhorn DJ; Kay J; Kautz S
    J Chem Ecol; 2014 Mar; 40(3):294-6. PubMed ID: 24573494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of type and quantity of leaf damage on growth, reproduction and defence of lima bean (Phaseolus lunatus L.).
    Blue E; Kay J; Younginger BS; Ballhorn DJ
    Plant Biol (Stuttg); 2015 May; 17(3):712-9. PubMed ID: 25377879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic extrafloral nectar production: the timing of leaf damage affects the defensive response in Senna mexicana var. chapmanii (Fabaceae).
    Jones IM; Koptur S
    Am J Bot; 2015 Jan; 102(1):58-66. PubMed ID: 25587148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defense-inducing volatiles: in search of the active motif.
    Heil M; Lion U; Boland W
    J Chem Ecol; 2008 May; 34(5):601-4. PubMed ID: 18408973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Danger signals - damaged-self recognition across the tree of life.
    Heil M; Land WG
    Front Plant Sci; 2014; 5():578. PubMed ID: 25400647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jasmonic acid enhances plant cyanogenesis and resistance to herbivory in lima bean.
    Kautz S; Trisel JA; Ballhorn DJ
    J Chem Ecol; 2014 Dec; 40(11-12):1186-96. PubMed ID: 25399357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Herbivore-induced volatiles as rapid signals in systemic plant responses: how to quickly move the information?
    Heil M; Bueno JC
    Plant Signal Behav; 2007 May; 2(3):191-3. PubMed ID: 19704694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction and relaxation of extrafloral nectaries in response to simulated herbivory in young Mallotus japonicus plants.
    Yamawo A; Suzuki N
    J Plant Res; 2018 Mar; 131(2):255-260. PubMed ID: 29090369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced Responsiveness to Volatile Signals Creates a Modular Reward Provisioning in an Obligate Food-for-Protection Mutualism.
    Hernández-Zepeda OF; Razo-Belman R; Heil M
    Front Plant Sci; 2018; 9():1076. PubMed ID: 30087690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ants are less attracted to the extrafloral nectar of plants with symbiotic, nitrogen-fixing rhizobia.
    Godschalx AL; Schädler M; Trisel JA; Balkan MA; Ballhorn DJ
    Ecology; 2015 Feb; 96(2):348-54. PubMed ID: 26240856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores.
    Huang W; Siemann E; Carrillo J; Ding J
    Ann Bot; 2015 Apr; 115(5):841-6. PubMed ID: 25681822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantity over quality: light intensity, but not red/far-red ratio, affects extrafloral nectar production in Senna mexicana var. chapmanii.
    Jones IM; Koptur S
    Ecol Evol; 2015 Sep; 5(18):4108-14. PubMed ID: 26445662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial and temporal dynamics of primary and secondary metabolism in Phaseolus vulgaris challenged by Pseudomonas syringae.
    Pérez-Bueno ML; Pineda M; Díaz-Casado E; Barón M
    Physiol Plant; 2015 Jan; 153(1):161-74. PubMed ID: 24871330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induced production of extrafloral nectar in intact lima bean plants in response to volatiles from spider mite-infested conspecific plants as a possible indirect defense against spider mites.
    Choh Y; Kugimiya S; Takabayashi J
    Oecologia; 2006 Mar; 147(3):455-60. PubMed ID: 16341892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudomonas syringae pv. phaseolicola effector HopF1 inhibits pathogen-associated molecular pattern-triggered immunity in a RIN4-independent manner in common bean (Phaseolus vulgaris).
    Hou S; Mu R; Ma G; Xu X; Zhang C; Yang Y; Wu D
    FEMS Microbiol Lett; 2011 Oct; 323(1):35-43. PubMed ID: 22092678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.