These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25400935)

  • 1. Microwave-assisted incorporation of silver nanoparticles in paper for point-of-use water purification.
    Dankovich TA
    Environ Sci Nano; 2014 Aug; 1(4):367-378. PubMed ID: 25400935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of copper nanoparticles into paper for point-of-use water purification.
    Dankovich TA; Smith JA
    Water Res; 2014 Oct; 63():245-51. PubMed ID: 25014431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment.
    Dankovich TA; Gray DG
    Environ Sci Technol; 2011 Mar; 45(5):1992-8. PubMed ID: 21314116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid synthesis of antimicrobial paper under microwave irradiation.
    kamel S
    Carbohydr Polym; 2012 Nov; 90(4):1538-42. PubMed ID: 22944413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial activity of silver nanoparticles synthesized In-situ by solution spraying onto cellulose.
    Yan J; Abdelgawad AM; El-Naggar ME; Rojas OJ
    Carbohydr Polym; 2016 Aug; 147():500-508. PubMed ID: 27178957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Facile Green Fabrication and Characterization of Cellulose-Silver Nanoparticle Composite Sheets for an Antimicrobial Food Packaging.
    Kwon S; Lee W; Choi JW; Bumbudsanpharoke N; Ko S
    Front Nutr; 2021; 8():778310. PubMed ID: 34926553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Preparation of Silver Nanoparticles in Paper by Reduction with Alkaline Glucose Solutions.
    Swensson B; Ek M; Gray DG
    ACS Omega; 2018 Aug; 3(8):9449-9452. PubMed ID: 31459079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective killing of bacteria under blue-light irradiation promoted by green synthesized silver nanoparticles loaded on reduced graphene oxide sheets.
    Caires CSA; Farias LAS; Gomes LE; Pinto BP; Gonçalves DA; Zagonel LF; Nascimento VA; Alves DCB; Colbeck I; Whitby C; Caires ARL; Wender H
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110984. PubMed ID: 32487400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Ag/rGO composite materials with antibacterial activities using facile and rapid microwave-assisted green route.
    Fan B; Li Y; Han F; Su T; Li J; Zhang R
    J Mater Sci Mater Med; 2018 May; 29(5):69. PubMed ID: 29748718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inactivation of bacteria from contaminated streams in Limpopo, South Africa by silver- or copper-nanoparticle paper filters.
    Dankovich TA; Levine JS; Potgieter N; Dillingham R; Smith JA
    Environ Sci (Camb); 2016; 1():85-96. PubMed ID: 27022474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disinfection action of electrostatic versus steric-stabilized silver nanoparticles on E. coli under different water chemistries.
    Fauss EK; MacCuspie RI; Oyanedel-Craver V; Smith JA; Swami NS
    Colloids Surf B Biointerfaces; 2014 Jan; 113():77-84. PubMed ID: 24060931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional Nanocomposite Cellulose Fibers Doped in Situ with Silver Nanoparticles.
    Rac-Rumijowska O; Maliszewska I; Fiedot-Toboła M; Karbownik I; Teterycz H
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave-assisted synthesis of carbon dots as reductant and stabilizer for silver nanoparticles with enhanced-peroxidase like activity for colorimetric determination of hydrogen peroxide and glucose.
    Gul U; Kanwal S; Tabassum S; Gilani MA; Rahim A
    Mikrochim Acta; 2020 Jan; 187(2):135. PubMed ID: 31950357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photochemical Deposition of Silver Nanoparticles on Clays and Exploring Their Antibacterial Activity.
    Lombardo PC; Poli AL; Castro LF; Perussi JR; Schmitt CC
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21640-7. PubMed ID: 27487246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna.
    Allen HJ; Impellitteri CA; Macke DA; Heckman JL; Poynton HC; Lazorchak JM; Govindaswamy S; Roose DL; Nadagouda MN
    Environ Toxicol Chem; 2010 Dec; 29(12):2742-50. PubMed ID: 20890913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Silver Nanoparticles from Extracts of Wild Ginger (
    Ramzan M; Karobari MI; Heboyan A; Mohamed RN; Mustafa M; Basheer SN; Desai V; Batool S; Ahmed N; Zeshan B
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional bacterial cellulose nanofibrils with silver nanoparticles and its antibacterial application.
    Zeng A; Yang R; Tong Y; Zhao W
    Int J Biol Macromol; 2023 Apr; 235():123739. PubMed ID: 36806768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose acetate nanofibers embedded with AgNPs anchored TiO
    Jatoi AW; Kim IS; Ni QQ
    Carbohydr Polym; 2019 Mar; 207():640-649. PubMed ID: 30600049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.
    Hong X; Wen J; Xiong X; Hu Y
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4489-97. PubMed ID: 26511259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuber extract of Arisaema flavum eco-benignly and effectively synthesize silver nanoparticles: Photocatalytic and antibacterial response against multidrug resistant engineered E. coli QH4.
    Rahman AU; Khan AU; Yuan Q; Wei Y; Ahmad A; Ullah S; Khan ZUH; Shams S; Tariq M; Ahmad W
    J Photochem Photobiol B; 2019 Apr; 193():31-38. PubMed ID: 30802773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.