BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 25400994)

  • 1. Zinc and gastrointestinal disease.
    Skrovanek S; DiGuilio K; Bailey R; Huntington W; Urbas R; Mayilvaganan B; Mercogliano G; Mullin JM
    World J Gastrointest Pathophysiol; 2014 Nov; 5(4):496-513. PubMed ID: 25400994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc enhancement of LLC-PK(1) renal epithelial barrier function.
    Wang X; Valenzano MC; Mercado JM; Zurbach EP; Flounders CJ; Mullin JM
    Clin Nutr; 2014 Apr; 33(2):280-6. PubMed ID: 23755840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc and micronutrient combinations to combat gastrointestinal inflammation.
    Scrimgeour AG; Condlin ML
    Curr Opin Clin Nutr Metab Care; 2009 Nov; 12(6):653-60. PubMed ID: 19684516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of Human-Oral-Epithelial-Barrier Function and of Tight Junctions by Micronutrients.
    Rybakovsky E; Valenzano MC; Deis R; DiGuilio KM; Thomas S; Mullin JM
    J Agric Food Chem; 2017 Dec; 65(50):10950-10958. PubMed ID: 29172516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remodeling of Tight Junctions and Enhancement of Barrier Integrity of the CACO-2 Intestinal Epithelial Cell Layer by Micronutrients.
    Valenzano MC; DiGuilio K; Mercado J; Teter M; To J; Ferraro B; Mixson B; Manley I; Baker V; Moore BA; Wertheimer J; Mullin JM
    PLoS One; 2015; 10(7):e0133926. PubMed ID: 26226276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An agonist of a zinc-sensing receptor GPR39 enhances tight junction assembly in intestinal epithelial cells via an AMPK-dependent mechanism.
    Pongkorpsakol P; Buasakdi C; Chantivas T; Chatsudthipong V; Muanprasat C
    Eur J Pharmacol; 2019 Jan; 842():306-313. PubMed ID: 30459126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMPK in regulation of apical junctions and barrier function of intestinal epithelium.
    Zhu MJ; Sun X; Du M
    Tissue Barriers; 2018; 6(2):1-13. PubMed ID: 30130441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc deficiency as a codeterminant for airway epithelial barrier dysfunction in an ex vivo model of COPD.
    Roscioli E; Jersmann HP; Lester S; Badiei A; Fon A; Zalewski P; Hodge S
    Int J Chron Obstruct Pulmon Dis; 2017; 12():3503-3510. PubMed ID: 29255357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gastrointestinal mucosal barrier function and diseases.
    Oshima T; Miwa H
    J Gastroenterol; 2016 Aug; 51(8):768-78. PubMed ID: 27048502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maintenance of Intestinal Epithelial Homeostasis by Zinc Transporters.
    Ohashi W; Hara T; Takagishi T; Hase K; Fukada T
    Dig Dis Sci; 2019 Sep; 64(9):2404-2415. PubMed ID: 30830525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens.
    Awad WA; Hess C; Hess M
    Toxins (Basel); 2017 Feb; 9(2):. PubMed ID: 28208612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epithelial physical barrier defects in chronic rhinosinusitis.
    Jiao J; Wang C; Zhang L
    Expert Rev Clin Immunol; 2019 Jun; 15(6):679-688. PubMed ID: 30925220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway.
    Yan H; Ajuwon KM
    PLoS One; 2017; 12(6):e0179586. PubMed ID: 28654658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ALDH2 Deficiency Promotes Ethanol-Induced Gut Barrier Dysfunction and Fatty Liver in Mice.
    Chaudhry KK; Samak G; Shukla PK; Mir H; Gangwar R; Manda B; Isse T; Kawamoto T; Salaspuro M; Kaihovaara P; Dietrich P; Dragatsis I; Nagy LE; Rao RK
    Alcohol Clin Exp Res; 2015 Aug; 39(8):1465-75. PubMed ID: 26173414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual Action of the PN159/KLAL/MAP Peptide: Increase of Drug Penetration across Caco-2 Intestinal Barrier Model by Modulation of Tight Junctions and Plasma Membrane Permeability.
    Bocsik A; Gróf I; Kiss L; Ötvös F; Zsíros O; Daruka L; Fülöp L; Vastag M; Kittel Á; Imre N; Martinek TA; Pál C; Szabó-Révész P; Deli MA
    Pharmaceutics; 2019 Feb; 11(2):. PubMed ID: 30744154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease.
    Zeissig S; Bürgel N; Günzel D; Richter J; Mankertz J; Wahnschaffe U; Kroesen AJ; Zeitz M; Fromm M; Schulzke JD
    Gut; 2007 Jan; 56(1):61-72. PubMed ID: 16822808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemotherapy-induced mucosal barrier dysfunction: an updated review on the role of intestinal tight junctions.
    Wardill HR; Bowen JM
    Curr Opin Support Palliat Care; 2013 Jun; 7(2):155-61. PubMed ID: 23492816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional mechanisms coordinating tight junction assembly during epithelial differentiation.
    Boivin FJ; Schmidt-Ott KM
    Ann N Y Acad Sci; 2017 Jun; 1397(1):80-99. PubMed ID: 28636799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc Supplementation, via GPR39, Upregulates PKCζ to Protect Intestinal Barrier Integrity in Caco-2 Cells Challenged by
    Shao YX; Lei Z; Wolf PG; Gao Y; Guo YM; Zhang BK
    J Nutr; 2017 Jul; 147(7):1282-1289. PubMed ID: 28515165
    [No Abstract]   [Full Text] [Related]  

  • 20. Intestinal epithelial barrier function and tight junction proteins with heat and exercise.
    Dokladny K; Zuhl MN; Moseley PL
    J Appl Physiol (1985); 2016 Mar; 120(6):692-701. PubMed ID: 26359485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.