These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 25401038)
1. Overview of the cellular and molecular basis of kidney fibrosis. Eddy AA Kidney Int Suppl (2011); 2014 Nov; 4(1):2-8. PubMed ID: 25401038 [TBL] [Abstract][Full Text] [Related]
5. [Identification of Biomarkers for Tubular Injury and Interstitial Fibrosis in Chronic Kidney Disease]. Nakagawa S Yakugaku Zasshi; 2017; 137(11):1355-1360. PubMed ID: 29093371 [TBL] [Abstract][Full Text] [Related]
6. Pivotal role of pericytes in kidney fibrosis. Kida Y; Duffield JS Clin Exp Pharmacol Physiol; 2011 Jul; 38(7):467-73. PubMed ID: 21517936 [TBL] [Abstract][Full Text] [Related]
7. Contribution of genetics and epigenetics to progression of kidney fibrosis. Tampe B; Zeisberg M Nephrol Dial Transplant; 2014 Sep; 29 Suppl 4():iv72-9. PubMed ID: 23975750 [TBL] [Abstract][Full Text] [Related]
8. The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis. Sun YB; Qu X; Caruana G; Li J Differentiation; 2016 Sep; 92(3):102-107. PubMed ID: 27262400 [TBL] [Abstract][Full Text] [Related]
12. Renal growth responses to acute and chronic injury: routes to therapeutic intervention. Fine LG; Norman JT J Am Soc Nephrol; 1992 Apr; 2(10 Suppl):S206-11. PubMed ID: 1600138 [TBL] [Abstract][Full Text] [Related]
13. Novel insights into pericyte-myofibroblast transition and therapeutic targets in renal fibrosis. Chang FC; Chou YH; Chen YT; Lin SL J Formos Med Assoc; 2012 Nov; 111(11):589-98. PubMed ID: 23217594 [TBL] [Abstract][Full Text] [Related]
14. Myofibroblast phenotypes expression in experimental renal scarring. Muchaneta-Kubara EC; el Nahas AM Nephrol Dial Transplant; 1997 May; 12(5):904-15. PubMed ID: 9175042 [TBL] [Abstract][Full Text] [Related]
15. Transforming growth factor-beta(1) and myofibroblasts: a potential pathway towards renal scarring in human glomerular disease. Goumenos DS; Tsamandas AC; Oldroyd S; Sotsiou F; Tsakas S; Petropoulou C; Bonikos D; El Nahas AM; Vlachojannis JG Nephron; 2001 Mar; 87(3):240-8. PubMed ID: 11287759 [TBL] [Abstract][Full Text] [Related]
16. Human Liver Stem Cell-Derived Extracellular Vesicles Prevent Aristolochic Acid-Induced Kidney Fibrosis. Kholia S; Herrera Sanchez MB; Cedrino M; Papadimitriou E; Tapparo M; Deregibus MC; Brizzi MF; Tetta C; Camussi G Front Immunol; 2018; 9():1639. PubMed ID: 30072992 [TBL] [Abstract][Full Text] [Related]
17. Featured Article: TGF-β1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts. Cho N; Razipour SE; McCain ML Exp Biol Med (Maywood); 2018 Apr; 243(7):601-612. PubMed ID: 29504479 [TBL] [Abstract][Full Text] [Related]
18. Direct contribution of epithelium to organ fibrosis: epithelial-mesenchymal transition. Guarino M; Tosoni A; Nebuloni M Hum Pathol; 2009 Oct; 40(10):1365-76. PubMed ID: 19695676 [TBL] [Abstract][Full Text] [Related]
19. Cardiac and renal fibrosis in chronic cardiorenal syndromes. Hundae A; McCullough PA Nephron Clin Pract; 2014; 127(1-4):106-12. PubMed ID: 25343831 [TBL] [Abstract][Full Text] [Related]
20. Macrophages, myofibroblasts, and extracellular matrix accumulation in interstitial fibrosis of chronic progressive nephropathy in aged rats. Nakatsuji S; Yamate J; Sakuma S Vet Pathol; 1998 Sep; 35(5):352-60. PubMed ID: 9754540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]