These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
474 related articles for article (PubMed ID: 25401095)
1. Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins. Moore ER; Ouellette SP Front Cell Infect Microbiol; 2014; 4():157. PubMed ID: 25401095 [TBL] [Abstract][Full Text] [Related]
2. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane. Olson MG; Ouellette SP; Rucks EA J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040 [TBL] [Abstract][Full Text] [Related]
3. Development of a Proximity Labeling System to Map the Rucks EA; Olson MG; Jorgenson LM; Srinivasan RR; Ouellette SP Front Cell Infect Microbiol; 2017; 7():40. PubMed ID: 28261569 [No Abstract] [Full Text] [Related]
5. Inclusion Membrane Growth and Composition Are Altered by Overexpression of Specific Inclusion Membrane Proteins in Chlamydia trachomatis L2. Olson-Wood MG; Jorgenson LM; Ouellette SP; Rucks EA Infect Immun; 2021 Jun; 89(7):e0009421. PubMed ID: 33875478 [TBL] [Abstract][Full Text] [Related]
6. Proximity Labeling To Map Host-Pathogen Interactions at the Membrane of a Bacterium-Containing Vacuole in Chlamydia trachomatis-Infected Human Cells. Olson MG; Widner RE; Jorgenson LM; Lawrence A; Lagundzin D; Woods NT; Ouellette SP; Rucks EA Infect Immun; 2019 Nov; 87(11):. PubMed ID: 31405957 [TBL] [Abstract][Full Text] [Related]
7. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis. Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221 [TBL] [Abstract][Full Text] [Related]
8. Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network. Mital J; Miller NJ; Fischer ER; Hackstadt T Cell Microbiol; 2010 Sep; 12(9):1235-49. PubMed ID: 20331642 [TBL] [Abstract][Full Text] [Related]
9. The Human Centrosomal Protein CCDC146 Binds Almeida F; Luís MP; Pereira IS; Pais SV; Mota LJ Front Cell Infect Microbiol; 2018; 8():254. PubMed ID: 30094225 [No Abstract] [Full Text] [Related]
10. Fierce competition between Toxoplasma and Chlamydia for host cell structures in dually infected cells. Romano JD; de Beaumont C; Carrasco JA; Ehrenman K; Bavoil PM; Coppens I Eukaryot Cell; 2013 Feb; 12(2):265-77. PubMed ID: 23243063 [TBL] [Abstract][Full Text] [Related]
11. Got mutants? How advances in chlamydial genetics have furthered the study of effector proteins. Andersen SE; Bulman LM; Steiert B; Faris R; Weber MM Pathog Dis; 2021 Feb; 79(2):. PubMed ID: 33512479 [TBL] [Abstract][Full Text] [Related]
12. Homologues of the Chlamydia trachomatis and Chlamydia muridarum Inclusion Membrane Protein IncS Are Interchangeable for Early Development but Not for Inclusion Stability in the Late Developmental Cycle. Cortina ME; Derré I mSphere; 2023 Apr; 8(2):e0000323. PubMed ID: 36853051 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells. van Ooij C; Apodaca G; Engel J Infect Immun; 1997 Feb; 65(2):758-66. PubMed ID: 9009339 [TBL] [Abstract][Full Text] [Related]
14. Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis. Gauliard E; Ouellette SP; Rueden KJ; Ladant D Front Cell Infect Microbiol; 2015; 5():13. PubMed ID: 25717440 [TBL] [Abstract][Full Text] [Related]
16. A Coinfection Model to Evaluate Chlamydia Inc Protein Interactions. Ende R; Derré I Methods Mol Biol; 2019; 2042():205-218. PubMed ID: 31385278 [TBL] [Abstract][Full Text] [Related]
17. Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis. Weber MM; Bauler LD; Lam J; Hackstadt T Infect Immun; 2015 Dec; 83(12):4710-8. PubMed ID: 26416906 [TBL] [Abstract][Full Text] [Related]
18. The Chlamydia trachomatis IncM Protein Interferes with Host Cell Cytokinesis, Centrosome Positioning, and Golgi Distribution and Contributes to the Stability of the Pathogen-Containing Vacuole. Luís MP; Pereira IS; Bugalhão JN; Simões CN; Mota C; Romão MJ; Mota LJ Infect Immun; 2023 Apr; 91(4):e0040522. PubMed ID: 36877064 [TBL] [Abstract][Full Text] [Related]
19. Orchestration of the mammalian host cell glucose transporter proteins-1 and 3 by Chlamydia contributes to intracellular growth and infectivity. Wang X; Hybiske K; Stephens RS Pathog Dis; 2017 Nov; 75(8):. PubMed ID: 29040458 [TBL] [Abstract][Full Text] [Related]
20. The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion. Kabeiseman EJ; Cichos KH; Moore ER Front Cell Infect Microbiol; 2014; 4():129. PubMed ID: 25309881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]