BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25401107)

  • 1. Targets and candidate agents for type 2 diabetes treatment with computational bioinformatics approach.
    Wang Q; Zhao Z; Shang J; Xia W
    J Diabetes Res; 2014; 2014():763936. PubMed ID: 25401107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the therapeutic mechanisms of Xiao-Ke-An in treatment of type 2 diabetes in mice by a Fangjiomics approach.
    Yang ZZ; Liu W; Zhang F; Li Z; Cheng YY
    Acta Pharmacol Sin; 2015 Jun; 36(6):699-707. PubMed ID: 25960133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of MDM2, YTHDF2 and DDX21 as potential biomarkers and targets for treatment of type 2 diabetes.
    Zheng J; Chen X; Wu L; Zhou Y; Wang Z; Li J; Liu Y; Peng G; Berggren PO; Zheng X; Tong N
    Biochem Biophys Res Commun; 2021 Dec; 581():110-117. PubMed ID: 34688145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Network-Based Bioinformatics Approach to Identify Molecular Biomarkers for Type 2 Diabetes that Are Linked to the Progression of Neurological Diseases.
    Rahman MH; Peng S; Hu X; Chen C; Rahman MR; Uddin S; Quinn JMW; Moni MA
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32041280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems Approach to Pathogenic Mechanism of Type 2 Diabetes and Drug Discovery Design Based on Deep Learning and Drug Design Specifications.
    Chang S; Chen JY; Chuang YJ; Chen BS
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33375269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the molecular mechanisms and potential therapeutic targets for diabetic nephropathy by bioinformatics methods.
    Wang WN; Zhang WL; Zhou GY; Ma FZ; Sun T; Su SS; Xu ZG
    Int J Mol Med; 2016 May; 37(5):1181-8. PubMed ID: 26986014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated analysis of the gene expression profile and DNA methylation profile of obese patients with type 2 diabetes.
    Shen J; Zhu B
    Mol Med Rep; 2018 Jun; 17(6):7636-7644. PubMed ID: 29620215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of differentially expressed genes and small molecule drugs for the treatment of tendinopathy using microarray analysis.
    Cai X; Cai M; Lou L
    Mol Med Rep; 2015 Apr; 11(4):3047-54. PubMed ID: 25502513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematically analyses of the common dysregulated networks to understand the common pathologies between T2D and atherosclerosis.
    Lin Z; Yang F; Sun L; Gao J; Cao Y; Qiu H; Zhan X
    Gene; 2018 Sep; 671():110-116. PubMed ID: 29705125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciphering Signaling Pathway Networks to Understand the Molecular Mechanisms of Metformin Action.
    Sun J; Zhao M; Jia P; Wang L; Wu Y; Iverson C; Zhou Y; Bowton E; Roden DM; Denny JC; Aldrich MC; Xu H; Zhao Z
    PLoS Comput Biol; 2015 Jun; 11(6):e1004202. PubMed ID: 26083494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Ingredients and Mechanism of Action of Rhizoma Coptidis against Type 2 Diabetes Based on Network-Pharmacology and Bioinformatics.
    Sun Y; Xiong YY; Wu HZ; Xiong WC; Liu B; Xie ZT; Xiao WP; Huang BS; Yang YF
    Curr Med Sci; 2020 Apr; 40(2):257-264. PubMed ID: 32337687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-Genome Bisulfite Sequencing of Human Pancreatic Islets Reveals Novel Differentially Methylated Regions in Type 2 Diabetes Pathogenesis.
    Volkov P; Bacos K; Ofori JK; Esguerra JL; Eliasson L; Rönn T; Ling C
    Diabetes; 2017 Apr; 66(4):1074-1085. PubMed ID: 28052964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.
    Ma C; Lv Q; Teng S; Yu Y; Niu K; Yi C
    Int J Rheum Dis; 2017 Aug; 20(8):971-979. PubMed ID: 28440025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathways targeted by antidiabetes drugs are enriched for multiple genes associated with type 2 diabetes risk.
    Segrè AV; Wei N; ; ; Altshuler D; Florez JC
    Diabetes; 2015 Apr; 64(4):1470-83. PubMed ID: 25368101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of DNA damage and mRNA/miRNA transcriptional expression profiles in hyperglycemic versus non-hyperglycemic patients with type 2 diabetes mellitus.
    Xavier DJ; Takahashi P; Evangelista AF; Foss-Freitas MC; Foss MC; Donadi EA; Passos GA; Sakamoto-Hojo ET
    Mutat Res; 2015 Jun; 776():98-110. PubMed ID: 26364207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A network biology workflow to study transcriptomics data of the diabetic liver.
    Kutmon M; Evelo CT; Coort SL
    BMC Genomics; 2014 Nov; 15(1):971. PubMed ID: 25399255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of potential drugs for diffuse large b-cell lymphoma based on bioinformatics and Connectivity Map database.
    Luo B; Gu YY; Wang XD; Chen G; Peng ZG
    Pathol Res Pract; 2018 Nov; 214(11):1854-1867. PubMed ID: 30244948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of differentially expressed genes in Type 2 Diabetes using in silico approach.
    Gupta MK; Vadde R
    Comput Biol Chem; 2019 Apr; 79():24-35. PubMed ID: 30708140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genes associated with diabetes: potential for novel therapeutic targets?
    Hara K; Kadowaki T; Odawara M
    Expert Opin Ther Targets; 2016; 20(3):255-67. PubMed ID: 26458049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the pancreatic islet-stress axis as a novel potential therapeutic target in diabetes mellitus.
    Ludwig B; Barthel A; Reichel A; Block NL; Ludwig S; Schally AV; Bornstein SR
    Vitam Horm; 2014; 95():195-222. PubMed ID: 24559919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.