BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 25401413)

  • 1. The quartic piecewise-linear criterion for the multiaxial yield behavior of human trabecular bone.
    Sanyal A; Scheffelin J; Keaveny TM
    J Biomech Eng; 2015 Jan; 137(1):0110091-01100910. PubMed ID: 25401413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biaxial normal strength behavior in the axial-transverse plane for human trabecular bone--effects of bone volume fraction, microarchitecture, and anisotropy.
    Sanyal A; Keaveny TM
    J Biomech Eng; 2013 Dec; 135(12):121010. PubMed ID: 24121715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The modified super-ellipsoid yield criterion for human trabecular bone.
    Bayraktar HH; Gupta A; Kwon RY; Papadopoulos P; Keaveny TM
    J Biomech Eng; 2004 Dec; 126(6):677-84. PubMed ID: 15796326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biaxial failure behavior of bovine tibial trabecular bone.
    Niebur GL; Feldstein MJ; Keaveny TM
    J Biomech Eng; 2002 Dec; 124(6):699-705. PubMed ID: 12596638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space.
    Wolfram U; Gross T; Pahr DH; Schwiedrzik J; Wilke HJ; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():218-28. PubMed ID: 23159819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of anisotropy of human lumbar vertebral trabecular bone on quantitative computed tomography-based apparent density.
    Aiyangar AK; Vivanco J; Au AG; Anderson PA; Smith EL; Ploeg HL
    J Biomech Eng; 2014 Sep; 136(9):091003. PubMed ID: 24825322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach.
    Levrero-Florencio F; Margetts L; Sales E; Xie S; Manda K; Pankaj P
    J Mech Behav Biomed Mater; 2016 Aug; 61():384-396. PubMed ID: 27108348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone.
    Wang J; Zhou B; Liu XS; Fields AJ; Sanyal A; Shi X; Adams M; Keaveny TM; Guo XE
    Bone; 2015 Mar; 72():71-80. PubMed ID: 25460571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone.
    Fenech CM; Keaveny TM
    J Biomech Eng; 1999 Aug; 121(4):414-22. PubMed ID: 10464696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneity of yield strain in low-density versus high-density human trabecular bone.
    Bevill G; Farhamand F; Keaveny TM
    J Biomech; 2009 Sep; 42(13):2165-70. PubMed ID: 19700162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating micro CT indices, CT imaging and computational modelling to assess the mechanical performance of fluoride treated bone.
    Sreenivasan D; Watson M; Callon K; Dray M; Das R; Grey A; Cornish J; Fernandez J
    Med Eng Phys; 2013 Dec; 35(12):1793-800. PubMed ID: 23993994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational assessment of the independent contribution of changes in canine trabecular bone volume fraction and microarchitecture to increased bone strength with suppression of bone turnover.
    Eswaran SK; Allen MR; Burr DB; Keaveny TM
    J Biomech; 2007; 40(15):3424-31. PubMed ID: 17618634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniaxial and Multiaxial Fatigue Life Prediction of the Trabecular Bone Based on Physiological Loading: A Comparative Study.
    Fatihhi SJ; Harun MN; Abdul Kadir MR; Abdullah J; Kamarul T; Öchsner A; Syahrom A
    Ann Biomed Eng; 2015 Oct; 43(10):2487-502. PubMed ID: 25828397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius.
    Newitt DC; Majumdar S; van Rietbergen B; von Ingersleben G; Harris ST; Genant HK; Chesnut C; Garnero P; MacDonald B
    Osteoporos Int; 2002 Jan; 13(1):6-17. PubMed ID: 11878456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the Tsai-Wu quadratic multiaxial failure criterion to bovine trabecular bone.
    Keaveny TM; Wachtel EF; Zadesky SP; Arramon YP
    J Biomech Eng; 1999 Feb; 121(1):99-107. PubMed ID: 10080095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear strength behavior of human trabecular bone.
    Sanyal A; Gupta A; Bayraktar HH; Kwon RY; Keaveny TM
    J Biomech; 2012 Oct; 45(15):2513-9. PubMed ID: 22884967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiaxial strength characteristics of trabecular bone.
    Stone JL; Beaupre GS; Hayes WC
    J Biomech; 1983; 16(9):743-52. PubMed ID: 6643545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone.
    Bevill G; Eswaran SK; Gupta A; Papadopoulos P; Keaveny TM
    Bone; 2006 Dec; 39(6):1218-25. PubMed ID: 16904959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.