These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 2540157)
41. Iron transport systems of Serratia marcescens. Angerer A; Klupp B; Braun V J Bacteriol; 1992 Feb; 174(4):1378-87. PubMed ID: 1531225 [TBL] [Abstract][Full Text] [Related]
42. Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. Berendsen RL; van Verk MC; Stringlis IA; Zamioudis C; Tommassen J; Pieterse CM; Bakker PA BMC Genomics; 2015 Jul; 16(1):539. PubMed ID: 26198432 [TBL] [Abstract][Full Text] [Related]
43. Cloning of pMOL28-encoded nickel resistance genes and expression of the genes in Alcaligenes eutrophus and Pseudomonas spp. Siddiqui RA; Benthin K; Schlegel HG J Bacteriol; 1989 Sep; 171(9):5071-8. PubMed ID: 2549012 [TBL] [Abstract][Full Text] [Related]
44. Siderophores and outer membrane proteins of antagonistic, plant-growth-stimulating, root-colonizing Pseudomonas spp. de Weger LA; van Boxtel R; van der Burg B; Gruters RA; Geels FP; Schippers B; Lugtenberg B J Bacteriol; 1986 Feb; 165(2):585-94. PubMed ID: 3003032 [TBL] [Abstract][Full Text] [Related]
45. Cloning and characterization of the ferric enterobactin receptor gene (pfeA) of Pseudomonas aeruginosa. Dean CR; Poole K J Bacteriol; 1993 Jan; 175(2):317-24. PubMed ID: 8419284 [TBL] [Abstract][Full Text] [Related]
46. Cloning and sequencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bacterium Pseudomonas sp. strain KKS102. Kimbara K; Hashimoto T; Fukuda M; Koana T; Takagi M; Oishi M; Yano K J Bacteriol; 1989 May; 171(5):2740-7. PubMed ID: 2540155 [TBL] [Abstract][Full Text] [Related]
47. Probing of Pseudomonas aeruginosa, Pseudomonas aureofaciens, Burkholderia (Pseudomonas) cepacia, Pseudomonas fluorescens, and Pseudomonas putida with the ferripyochelin receptor A gene and the synthesis of pyochelin in Pseudomonas aureofaciens, Pseudomonas fluorescens, and Pseudomonas putida. Castignetti D Curr Microbiol; 1997 Apr; 34(4):250-7. PubMed ID: 9058547 [TBL] [Abstract][Full Text] [Related]
48. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565 [TBL] [Abstract][Full Text] [Related]
49. Ferric rhizoferrin uptake into Morganella morganii: characterization of genes involved in the uptake of a polyhydroxycarboxylate siderophore. Kühn S; Braun V; Köster W J Bacteriol; 1996 Jan; 178(2):496-504. PubMed ID: 8550472 [TBL] [Abstract][Full Text] [Related]
50. FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors. Ankenbauer RG; Quan HN J Bacteriol; 1994 Jan; 176(2):307-19. PubMed ID: 8288523 [TBL] [Abstract][Full Text] [Related]
51. DNA homology between siderophore genes from fluorescent pseudomonads. Rombel IT; Lamont IL J Gen Microbiol; 1992 Jan; 138(1):181-7. PubMed ID: 1532617 [TBL] [Abstract][Full Text] [Related]
52. Siderophore production and induction of iron-regulated proteins by a microorganism from rhizosphere of barley. Terano H; Nomoto K; Takase S Biosci Biotechnol Biochem; 2002 Nov; 66(11):2471-3. PubMed ID: 12506990 [TBL] [Abstract][Full Text] [Related]
53. Iron transport-mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas strains. Buyer JS; Leong J J Biol Chem; 1986 Jan; 261(2):791-4. PubMed ID: 2934391 [TBL] [Abstract][Full Text] [Related]
54. Complex regulation of AprA metalloprotease in Pseudomonas fluorescens M114: evidence for the involvement of iron, the ECF sigma factor, PbrA and pseudobactin M114 siderophore. Maunsell B; Adams C; O'Gara F Microbiology (Reading); 2006 Jan; 152(Pt 1):29-42. PubMed ID: 16385113 [TBL] [Abstract][Full Text] [Related]
55. Microbial Antagonism at the Root Level Is Involved in the Suppression of Fusarium Wilt by the Combination of Nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Duijff BJ; Recorbet G; Bakker PA; Loper JE; Lemanceau P Phytopathology; 1999 Nov; 89(11):1073-9. PubMed ID: 18944664 [TBL] [Abstract][Full Text] [Related]
56. Identification of polypeptides encoded by cloned pJM1 iron uptake DNA isolated from Vibrio anguillarum 775. Singer JT; Earley S J Bacteriol; 1989 May; 171(5):2293-302. PubMed ID: 2651396 [TBL] [Abstract][Full Text] [Related]
57. Genetic analysis of the iron uptake region of the Vibrio anguillarum plasmid pJM1: molecular cloning of genetic determinants encoding a novel trans activator of siderophore biosynthesis. Tolmasky ME; Actis LA; Crosa JH J Bacteriol; 1988 Apr; 170(4):1913-9. PubMed ID: 2832388 [TBL] [Abstract][Full Text] [Related]
58. The pesticin receptor of Yersinia enterocolitica: a novel virulence factor with dual function. Rakin A; Saken E; Harmsen D; Heesemann J Mol Microbiol; 1994 Jul; 13(2):253-63. PubMed ID: 7984105 [TBL] [Abstract][Full Text] [Related]
59. Structure of pseudobactin A, a second siderophore from plant growth promoting Pseudomonas B10. Teintze M; Leong J Biochemistry; 1981 Oct; 20(22):6457-62. PubMed ID: 7306519 [TBL] [Abstract][Full Text] [Related]
60. Regulation of the p-hydroxybenzoic acid hydroxylase gene (pobA) in plant-growth-promoting Pseudomonas putida WCS358. Bertani I; Kojic M; Venturi V Microbiology (Reading); 2001 Jun; 147(Pt 6):1611-1620. PubMed ID: 11390692 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]