These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 25401592)

  • 1. Laser heterodyne interferometer for simultaneous measuring displacement and angle based on the Faraday effect.
    Zhang E; Hao Q; Chen B; Yan L; Liu Y
    Opt Express; 2014 Oct; 22(21):25587-98. PubMed ID: 25401592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser heterodyne interferometer with rotational error compensation for precision displacement measurement.
    Zhang E; Chen B; Zheng H; Yan L; Teng X
    Opt Express; 2018 Jan; 26(1):90-98. PubMed ID: 29328296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Note: Comparison experimental results of the laser heterodyne interferometer for angle measurement based on the Faraday effect.
    Zhang E; Chen B; Zheng H; Teng X; Yan L
    Rev Sci Instrum; 2018 Apr; 89(4):046104. PubMed ID: 29716367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An orthogonal return method for linearly polarized beam based on the Faraday effect and its application in interferometer.
    Chen B; Zhang E; Yan L; Liu Y
    Rev Sci Instrum; 2014 Oct; 85(10):105103. PubMed ID: 25362452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology.
    Chen B; Cheng L; Yan L; Zhang E; Lou Y
    Rev Sci Instrum; 2017 Mar; 88(3):035114. PubMed ID: 28372378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High resolution heterodyne interferometer without detectable periodic nonlinearity.
    Joo KN; Ellis JD; Buice ES; Spronck JW; Schmidt RH
    Opt Express; 2010 Jan; 18(2):1159-65. PubMed ID: 20173939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-shifting interferometry based on the lateral displacement of the light source.
    Robledo-Sanchez C; Juarez-Salazar R; Meneses-Fabian C; Guerrero-Sánchez F; Arévalo Aguilar LM; Rodriguez-Zurita G; Ixba-Santos V
    Opt Express; 2013 Jul; 21(14):17228-33. PubMed ID: 23938569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters.
    Chen B; Xu B; Yan L; Zhang E; Liu Y
    Opt Express; 2015 Apr; 23(7):9052-73. PubMed ID: 25968740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser heterodyne interferometric signal processing method based on rising edge locking with high frequency clock signal.
    Zhang E; Chen B; Yan L; Yang T; Hao Q; Dong W; Li C
    Opt Express; 2013 Feb; 21(4):4638-52. PubMed ID: 23481996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A laser interferometer for measuring straightness and its position based on heterodyne interferometry.
    Chen B; Zhang E; Yan L; Li C; Tang W; Feng Q
    Rev Sci Instrum; 2009 Nov; 80(11):115113. PubMed ID: 19947763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative optical wavefront measurement in displacement measuring interferometer systems with sub-nm precision.
    Meskers AJ; Voigt D; Spronck JW
    Opt Express; 2013 Jul; 21(15):17920-30. PubMed ID: 23938664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phase modulating homodyne interferometer with tilting error compensation by use of an integrated four-photodetector.
    Lou Y; Yan L; Chen B
    Rev Sci Instrum; 2019 Feb; 90(2):025111. PubMed ID: 30831690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser interferometric system for six-axis motion measurement.
    Zhang Z; Menq CH
    Rev Sci Instrum; 2007 Aug; 78(8):083107. PubMed ID: 17764313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements.
    Yan H; Duan HZ; Li LT; Liang YR; Luo J; Yeh HC
    Rev Sci Instrum; 2015 Dec; 86(12):123102. PubMed ID: 26724001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral measurement of the caesium D(2) line with a tunable heterodyne interferometer.
    Spani Molella L; Rinkleff RH; Danzmann K
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Apr; 63(5):987-93. PubMed ID: 16504573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision displacement measurement by active laser heterodyne interferometry.
    Lin YJ; Pan CL
    Appl Opt; 1991 May; 30(13):1648-52. PubMed ID: 20700338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of delayed self-heterodyne interference measurement of laser linewidth using Mach-Zehnder and Michelson interferometers.
    Canagasabey A; Michie A; Canning J; Holdsworth J; Fleming S; Wang HC; Aslund ML
    Sensors (Basel); 2011; 11(10):9233-41. PubMed ID: 22163692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Displacement interferometry with stabilization of wavelength in air.
    Lazar J; Holá M; Cíp O; Cížek M; Hrabina J; Buchta Z
    Opt Express; 2012 Dec; 20(25):27830-7. PubMed ID: 23262728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution-enhanced heterodyne laser interferometer with differential configuration for roll angle measurement.
    Qi J; Wang Z; Huang J; Gao J
    Opt Express; 2018 Apr; 26(8):9634-9644. PubMed ID: 29715912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements.
    Hsieh HL; Pan SW
    Opt Express; 2015 Feb; 23(3):2451-65. PubMed ID: 25836113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.