BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25401625)

  • 21. Carbon nanotube doped liquid crystal OCB cells: physical and electro-optical properties.
    Lu SY; Chien LC
    Opt Express; 2008 Aug; 16(17):12777-85. PubMed ID: 18711517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of refractive liquid crystal lenses using an efficient multigrid simulation.
    Milton H; Brimicombe P; Morgan P; Gleeson H; Clamp J
    Opt Express; 2012 May; 20(10):11159-65. PubMed ID: 22565739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arrayed dual-mode integrated liquid crystal microlens driven jointly by both independent signal voltages.
    Wang Z; Chen M; Hu C; Liu K; Li Z; Ye M; Chen Z; Yuan X; Wang H; Xie C; Zhang X
    Opt Express; 2021 Nov; 29(24):40617-40632. PubMed ID: 34809397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tunable liquid crystal microlenses with crater polymer prepared by droplet evaporation.
    Hwang SJ; Liu YX; Porter GA
    Opt Express; 2013 Dec; 21(25):30731-8. PubMed ID: 24514649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarizer-free liquid crystal display with double microlens array layers and polarization-controlling liquid crystal layer.
    Lee YJ; Yu CJ; Kim JH
    Opt Express; 2015 Oct; 23(21):27627-32. PubMed ID: 26480423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and characterization of linear diffusers based on concave micro lens arrays.
    Bitterli R; Scharf T; Herzig HP; Noell W; de Rooij N; Bich A; Roth S; Weible KJ; Voelkel R; Zimmermann M; Schmidt M
    Opt Express; 2010 Jun; 18(13):14251-61. PubMed ID: 20588560
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Red blood cell as an adaptive optofluidic microlens.
    Miccio L; Memmolo P; Merola F; Netti PA; Ferraro P
    Nat Commun; 2015 Mar; 6():6502. PubMed ID: 25758026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Depth-extended integral imaging system based on a birefringence lens array providing polarization switchable focal lengths.
    Park CK; Lee SS; Hwang YS
    Opt Express; 2009 Oct; 17(21):19047-54. PubMed ID: 20372640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Switching of polymer-stabilized vertical alignment liquid crystal cell.
    Huang CY; Jhuang WY; Hsieh CT
    Opt Express; 2008 Mar; 16(6):3859-64. PubMed ID: 18542482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improvement of performance of liquid crystal microlens with polymer surface modification.
    Hwang SJ; Liu YX; Porter GA
    Opt Express; 2014 Feb; 22(4):4620-7. PubMed ID: 24663781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer.
    Yeh HC; Kuo YC; Lin SH; Lin JD; Mo TS; Huang SY
    Opt Lett; 2011 Apr; 36(8):1311-3. PubMed ID: 21499340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical particle manipulation using an LC device with eight-divided circularly hole-patterned electrodes.
    Kawamura M; Ye M; Sato S
    Opt Express; 2008 Jul; 16(14):10059-65. PubMed ID: 18607413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dielectric spectroscopy analysis in employing liquid crystal phthalonitrile derivative in nematic liquid crystals.
    Okutan M; Yakuphanoglu F; Köysal O; Durmuş M; Ahsen V
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jun; 67(2):531-5. PubMed ID: 16971169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrically tunable infrared filter based on the liquid crystal Fabry-Perot structure for spectral imaging detection.
    Zhang H; Muhammmad A; Luo J; Tong Q; Lei Y; Zhang X; Sang H; Xie C
    Appl Opt; 2014 Sep; 53(25):5632-9. PubMed ID: 25321356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid crystal-based square lens array with tunable focal length.
    Kim J; Kim J; Na JH; Lee B; Lee SD
    Opt Express; 2014 Feb; 22(3):3316-24. PubMed ID: 24663622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display.
    Chang YC; Jen TH; Ting CH; Huang YP
    Opt Express; 2014 Feb; 22(3):2714-24. PubMed ID: 24663563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrically Controlled Liquid Crystal Microlens Array Based on Single-Crystal Graphene Coupling Alignment for Plenoptic Imaging.
    Chen M; Shao Q; He W; Wei D; Hu C; Shi J; Liu K; Wang H; Xie C; Zhang X
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33256175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Paper like cholesteric interferential mirror.
    Petriashvili G; Japaridze K; Devadze L; Zurabishvili C; Sepashvili N; Ponjavidze N; De Santo MP; Matranga MA; Hamdi R; Ciuchi F; Barberi R
    Opt Express; 2013 Sep; 21(18):20821-30. PubMed ID: 24103954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM.
    Martínez JL; Moreno I; del Mar Sánchez-López M; Vargas A; García-Martínez P
    Opt Express; 2014 Oct; 22(21):25866-79. PubMed ID: 25401619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element.
    Chen HS; Lin YH; Srivastava AK; Chigrinov VG; Chang CM; Wang YJ
    Opt Express; 2014 Jun; 22(11):13138-45. PubMed ID: 24921509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.