These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 25401633)

  • 21. Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator.
    Mescia L; Bia P; De Sario M; Di Tommaso A; Prudenzano F
    Opt Express; 2012 Mar; 20(7):7616-29. PubMed ID: 22453441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrically pumped silicon waveguide light sources.
    Jayatilleka H; Nasrollahy-Shiraz A; Kenyon AJ
    Opt Express; 2011 Nov; 19(24):24569-76. PubMed ID: 22109485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A higher-order-mode erbium-doped-fiber amplifier.
    Nicholson JW; Fini JM; DeSantolo AM; Monberg E; DiMarcello F; Fleming J; Headley C; DiGiovanni DJ; Ghalmi S; Ramachandran S
    Opt Express; 2010 Aug; 18(17):17651-7. PubMed ID: 20721151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Erbium-doped hybrid waveguide amplifiers with net optical gain on a fully industrial 300 mm silicon nitride photonic platform.
    Rönn J; Zhang J; Zhang W; Tu Z; Matikainen A; Leroux X; Durán-Valdeiglesias E; Vulliet N; Boeuf F; Alonso-Ramos C; Lipsanen H; Vivien L; Sun Z; Cassan E
    Opt Express; 2020 Sep; 28(19):27919-27926. PubMed ID: 32988074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-power operation of silica-based Raman fiber amplifier at 2147 nm.
    Liu J; Tan F; Shi H; Wang P
    Opt Express; 2014 Nov; 22(23):28383-9. PubMed ID: 25402080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thulium-doped tellurium oxide waveguide amplifier with 7.6  dB net gain on a silicon nitride chip.
    Kiani KM; Frankis HC; Mbonde HM; Mateman R; Leinse A; Knights AP; Bradley JDB
    Opt Lett; 2019 Dec; 44(23):5788-5791. PubMed ID: 31774780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass.
    Fernandez TT; Della Valle G; Osellame R; Jose G; Chiodo N; Jha A; Laporta P
    Opt Express; 2008 Sep; 16(19):15198-205. PubMed ID: 18795058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High optical gain in erbium-doped potassium double tungstate channel waveguide amplifiers.
    Vázquez-Córdova SA; Aravazhi S; Grivas C; Yong YS; García-Blanco SM; Herek JL; Pollnau M
    Opt Express; 2018 Mar; 26(5):6260-6266. PubMed ID: 29529817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-gain erbium silicate waveguide amplifier and a low-threshold, high-efficiency laser.
    Zhou P; Wang S; Wang X; He Y; Zhou Z; Zhou L; Wu K
    Opt Express; 2018 Jun; 26(13):16689-16707. PubMed ID: 30119493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gain analysis of optically-pumped Si nanocrystal waveguide amplifiers on silicon substrate.
    Lin GR; Lian CW; Wu CL; Lin YH
    Opt Express; 2010 Apr; 18(9):9213-9. PubMed ID: 20588768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Passively Q-switched erbium all-fiber lasers by use of thulium-doped saturable-absorber fibers.
    Tsai TY; Fang YC; Hung SH
    Opt Express; 2010 May; 18(10):10049-54. PubMed ID: 20588858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced photo-assisted electrical gating in vanadium dioxide based on saturation-induced gain modulation of erbium-doped fiber amplifier.
    Lee YW; Kim BJ; Choi S; Lee YW; Kim HT
    Opt Express; 2009 Oct; 17(22):19605-10. PubMed ID: 19997180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers.
    Paul MC; Harun SW; Huri NA; Hamzah A; Das S; Pal M; Bhadra SK; Ahmad H; Yoo S; Kalita MP; Boyland AJ; Sahu JK
    Opt Lett; 2010 Sep; 35(17):2882-4. PubMed ID: 20808356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform.
    Belt M; Huffman T; Davenport ML; Li W; Barton JS; Blumenthal DJ
    Opt Lett; 2013 Nov; 38(22):4825-8. PubMed ID: 24322142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High on-chip gain spiral Al
    Bonneville DB; Osornio-Martinez CE; Dijkstra M; García-Blanco SM
    Opt Express; 2024 Apr; 32(9):15527-15536. PubMed ID: 38859200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers.
    Sobon G; Kaczmarek P; Antonczak A; Sotor J; Abramski KM
    Opt Express; 2011 Sep; 19(20):19104-13. PubMed ID: 21996851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of noise figure spectral distribution in erbium doped fiber amplifiers pumped near 980 and 1480 nm.
    Desurvire E
    Appl Opt; 1990 Jul; 29(21):3118-25. PubMed ID: 20567385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Planar glass waveguide ring resonators with gain.
    Hsiao HK; Winick KA
    Opt Express; 2007 Dec; 15(26):17783-97. PubMed ID: 19551075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultra-low-threshold Er:Yb sol-gel microlaser on silicon.
    Hsu HS; Cai C; Armani AM
    Opt Express; 2009 Dec; 17(25):23265-71. PubMed ID: 20052252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers.
    Xiao F; Alameh K; Lee YT
    Opt Express; 2009 Dec; 17(25):23123-9. PubMed ID: 20052239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.