These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
46. Gain optimization of an erbium-ytterbium co-doped amplifier via a Si Dong Z; Zhao Y; Wang Y; Wei W; Ding L; Tang L; Li Y Opt Express; 2023 Oct; 31(21):35419-35430. PubMed ID: 37859274 [TBL] [Abstract][Full Text] [Related]
47. High-power frequency comb in the range of 2-2.15 μm based on a holmium fiber amplifier seeded by wavelength-shifted Raman solitons from an erbium-fiber laser. Coluccelli N; Cassinerio M; Gambetta A; Laporta P; Galzerano G Opt Lett; 2014 Mar; 39(6):1661-4. PubMed ID: 24690863 [TBL] [Abstract][Full Text] [Related]
48. 3D printed and spiral lithographically patterned erbium-doped polymer micro-waveguide amplifiers. Gao H; Li H; Chen GFR; Xing P; Tan MC; Tan DTH Sci Rep; 2021 Oct; 11(1):21292. PubMed ID: 34711919 [TBL] [Abstract][Full Text] [Related]
49. Strip loaded waveguide amplifiers based on erbium-doped nanocomposites with 17 dB internal net gain. Tao S; Song H; Zhao D; Yang Y; Wang S; Yan J; Wei J; Wang X; Qin G; Wang F; Zhang D Opt Express; 2024 Feb; 32(5):7931-7939. PubMed ID: 38439462 [TBL] [Abstract][Full Text] [Related]
50. An all-silicon Raman laser. Rong H; Liu A; Jones R; Cohen O; Hak D; Nicolaescu R; Fang A; Paniccia M Nature; 2005 Jan; 433(7023):292-4. PubMed ID: 15635371 [TBL] [Abstract][Full Text] [Related]
51. Demonstration of an erbium-doped fiber with annular doping for low gain compression in cladding-pumped amplifiers. Matte-Breton C; Chen H; Fontaine NK; Ryf R; Essiambre RJ; Kelly C; Jin C; Messaddeq Y; LaRochelle S Opt Express; 2018 Oct; 26(20):26633-26645. PubMed ID: 30469746 [TBL] [Abstract][Full Text] [Related]
52. Multi-wavelength Erbium-doped fiber laser based on four-wave-mixing effect in single mode fiber and high nonlinear fiber. Wang P; Weng D; Li K; Liu Y; Yu X; Zhou X Opt Express; 2013 May; 21(10):12570-8. PubMed ID: 23736476 [TBL] [Abstract][Full Text] [Related]
53. Simulation of an erbium-doped chalcogenide micro-disk mid-infrared laser source. Al Tal F; Dimas C; Hu J; Agarwal A; Kimerling LC Opt Express; 2011 Jun; 19(13):11951-62. PubMed ID: 21716429 [TBL] [Abstract][Full Text] [Related]
55. Theoretical investigation of the more suitable rare earth to achieve high gain in waveguide based on silica containing silicon nanograins doped with either Nd³+ or Er³+ ions. Fafin A; Cardin J; Dufour C; Gourbilleau F Opt Express; 2014 May; 22(10):12296-306. PubMed ID: 24921348 [TBL] [Abstract][Full Text] [Related]
56. High power resonant pumping of Tm-doped fiber amplifiers in core- and cladding-pumped configurations. Creeden D; Johnson BR; Rines GA; Setzler SD Opt Express; 2014 Nov; 22(23):29067-80. PubMed ID: 25402145 [TBL] [Abstract][Full Text] [Related]
57. High power operation of cladding pumped holmium-doped silica fibre lasers. Hemming A; Bennetts S; Simakov N; Davidson A; Haub J; Carter A Opt Express; 2013 Feb; 21(4):4560-6. PubMed ID: 23481989 [TBL] [Abstract][Full Text] [Related]
58. Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers. Saraceno CJ; Heckl OH; Baer CR; Südmeyer T; Keller U Opt Express; 2011 Jan; 19(2):1395-407. PubMed ID: 21263681 [TBL] [Abstract][Full Text] [Related]
59. Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing. Shee YG; Al-Mansoori MH; Ismail A; Hitam S; Mahdi MA Opt Express; 2011 Jan; 19(3):1699-706. PubMed ID: 21368983 [TBL] [Abstract][Full Text] [Related]
60. 170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon. Bradley JD; Costa e Silva M; Gay M; Bramerie L; Driessen A; Wörhoff K; Simon JC; Pollnau M Opt Express; 2009 Nov; 17(24):22201-8. PubMed ID: 19997466 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]