These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25401770)

  • 21. The influence of natural variation at the foraging gene on thermotolerance in adult Drosophila in a narrow temperature range.
    Chen A; Kramer EF; Purpura L; Krill JL; Zars T; Dawson-Scully K
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Dec; 197(12):1113-8. PubMed ID: 21861180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Patterns of gene expression associated with recovery and injury in heat-stressed rats.
    Stallings JD; Ippolito DL; Rakesh V; Baer CE; Dennis WE; Helwig BG; Jackson DA; Leon LR; Lewis JA; Reifman J
    BMC Genomics; 2014 Dec; 15(1):1058. PubMed ID: 25471284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptomic response to heat stress among ecologically divergent populations of redband trout.
    Narum SR; Campbell NR
    BMC Genomics; 2015 Feb; 16(1):103. PubMed ID: 25765850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ecologically Relevant Temperature Ramping Rates Enhance the Protective Heat Shock Response in an Intertidal Ectotherm.
    Harada AE; Burton RS
    Physiol Biochem Zool; 2019; 92(2):152-162. PubMed ID: 30694107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature.
    Sørensen JG; Schou MF; Kristensen TN; Loeschcke V
    Sci Rep; 2016 Aug; 6():30975. PubMed ID: 27487917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcripts from the Drosophila heat-shock gene hsr-omega influence rates of protein synthesis but hardly affect resistance to heat knockdown.
    Johnson TK; Cockerell FE; McKechnie SW
    Mol Genet Genomics; 2011 Apr; 285(4):313-23. PubMed ID: 21399957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Evolution of the response to heat shock in genus Drosophila].
    Garbuz DG; Molodtsov VB; Velikodvorskaia VV; Evgen'ev MB; Zatsepina OG
    Genetika; 2002 Aug; 38(8):1097-109. PubMed ID: 12244694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Linking transcriptional responses to organismal tolerance reveals mechanisms of thermal sensitivity in a mesothermal endangered fish.
    Komoroske LM; Connon RE; Jeffries KM; Fangue NA
    Mol Ecol; 2015 Oct; 24(19):4960-81. PubMed ID: 26339983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Survival of heat stress with and without heat hardening in Drosophila melanogaster: interactions with larval density.
    Arias LN; Sambucetti P; Scannapieco AC; Loeschcke V; Norry FM
    J Exp Biol; 2012 Jul; 215(Pt 13):2220-5. PubMed ID: 22675182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene expression under thermal stress varies across a geographical range expansion front.
    Lancaster LT; Dudaniec RY; Chauhan P; Wellenreuther M; Svensson EI; Hansson B
    Mol Ecol; 2016 Mar; 25(5):1141-56. PubMed ID: 26821170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid decline of cold tolerance at young age is associated with expression of stress genes in Drosophila melanogaster.
    Colinet H; Siaussat D; Bozzolan F; Bowler K
    J Exp Biol; 2013 Jan; 216(Pt 2):253-9. PubMed ID: 22996448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cold hardening and transcriptional change in Drosophila melanogaster.
    Qin W; Neal SJ; Robertson RM; Westwood JT; Walker VK
    Insect Mol Biol; 2005 Dec; 14(6):607-13. PubMed ID: 16313561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Full genome gene expression analysis of the heat stress response in Drosophila melanogaster.
    Sørensen JG; Nielsen MM; Kruhøffer M; Justesen J; Loeschcke V
    Cell Stress Chaperones; 2005; 10(4):312-28. PubMed ID: 16333985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biogeographic origin and thermal acclimation interact to determine survival and hsp90 expression in Drosophila species submitted to thermal stress.
    Boher F; Trefault N; Piulachs MD; Bellés X; Godoy-Herrera R; Bozinovic F
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Aug; 162(4):391-6. PubMed ID: 22561660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline.
    Rako L; Blacket MJ; McKechnie SW; Hoffmann AA
    Mol Ecol; 2007 Jul; 16(14):2948-57. PubMed ID: 17614909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenotypic plasticity of the Drosophila transcriptome.
    Zhou S; Campbell TG; Stone EA; Mackay TF; Anholt RR
    PLoS Genet; 2012; 8(3):e1002593. PubMed ID: 22479193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal stress and predation risk trigger distinct transcriptomic responses in the intertidal snail Nucella lapillus.
    Chu ND; Miller LP; Kaluziak ST; Trussell GC; Vollmer SV
    Mol Ecol; 2014 Dec; 23(24):6104-13. PubMed ID: 25377436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolutionary capacity of upper thermal limits: beyond single trait assessments.
    Blackburn S; van Heerwaarden B; Kellermann V; Sgrò CM
    J Exp Biol; 2014 Jun; 217(Pt 11):1918-24. PubMed ID: 24625644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heat shock gene expression during recovery after transient cold shock in Drosophila auraria (Diptera: Drosophilidae).
    Yiangou M; Tsapogas P; Nikolaidis N; Scouras ZG
    Cytobios; 1997; 92(369):91-8. PubMed ID: 9693879
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster.
    Morgan TJ; Mackay TF
    Heredity (Edinb); 2006 Mar; 96(3):232-42. PubMed ID: 16404413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.