These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25401864)

  • 21. Symmetry breaking and strong coupling in planar optical metamaterials.
    Aydin K; Pryce IM; Atwater HA
    Opt Express; 2010 Jun; 18(13):13407-17. PubMed ID: 20588471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transmission line metamaterials based on strongly coupled split ring/complementary split ring resonators.
    Lin YJ; Chang YH; Chien WC; Kuo W
    Opt Express; 2017 Nov; 25(24):30395-30405. PubMed ID: 29221069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Terahertz near-field imaging of dielectric resonators.
    Lee WS; Kaltenecker K; Nirantar S; Withayachumnankul W; Walther M; Bhaskaran M; Fischer BM; Sriram S; Fumeaux C
    Opt Express; 2017 Feb; 25(4):3756-3764. PubMed ID: 28241587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study.
    Wallauer J; Bitzer A; Waselikowski S; Walther M
    Opt Express; 2011 Aug; 19(18):17283-92. PubMed ID: 21935092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmon coupling in vertical split-ring resonator metamolecules.
    Wu PC; Hsu WL; Chen WT; Huang YW; Liao CY; Liu AQ; Zheludev NI; Sun G; Tsai DP
    Sci Rep; 2015 Jun; 5():9726. PubMed ID: 26043931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances.
    Al-Naib I; Hebestreit E; Rockstuhl C; Lederer F; Christodoulides D; Ozaki T; Morandotti R
    Phys Rev Lett; 2014 May; 112(18):183903. PubMed ID: 24856698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmon transmission through excitonic subwavelength gaps.
    Sukharev M; Nitzan A
    J Chem Phys; 2016 Apr; 144(14):144703. PubMed ID: 27083741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies.
    Liu H; Genov DA; Wu DM; Liu YM; Steele JM; Sun C; Zhu SN; Zhang X
    Phys Rev Lett; 2006 Dec; 97(24):243902. PubMed ID: 17280285
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Array of piezoelectric lateral electric field excited resonators.
    Borodina IA; Zaitsev BD; Teplykh AA; Shikhabudinov AM; Kuznetsova IE
    Ultrasonics; 2015 Sep; 62():200-2. PubMed ID: 26060097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-bias terahertz amplitude modulator based on split-ring resonators and graphene.
    Degl'Innocenti R; Jessop DS; Shah YD; Sibik J; Zeitler JA; Kidambi PR; Hofmann S; Beere HE; Ritchie DA
    ACS Nano; 2014 Mar; 8(3):2548-54. PubMed ID: 24558983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transmission bleaching and coupling crossover in a split tapered aperture.
    Liu S; Mitrofanov O; Nahata A
    Opt Express; 2013 Dec; 21(25):30895-902. PubMed ID: 24514662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synchronization in a mechanical resonator array coupled quadratically to a common electromagnetic field mode.
    León Aveleyra G; Holmes CA; Milburn GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062912. PubMed ID: 25019856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electromagnetic interaction in stacked split ring resonator arrays.
    Liu JQ; He MD; Chen S; Huang CP; Zhou L; Zhu YY
    J Phys Condens Matter; 2011 Jun; 23(21):215303. PubMed ID: 21555832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence.
    Ding P; Liang EJ; Zhang L; Zhou Q; Yuan YX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016604. PubMed ID: 19257157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides.
    Marqués R; Martel J; Mesa F; Medina F
    Phys Rev Lett; 2002 Oct; 89(18):183901. PubMed ID: 12398601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of wave interaction of wires and split-ring resonators for the losses in a left-handed composite.
    Simovski CR; Sauviac B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046607. PubMed ID: 15600547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel sensors based on the symmetry properties of split ring resonators (SRRs).
    Naqui J; Durán-Sindreu M; Martín F
    Sensors (Basel); 2011; 11(8):7545-53. PubMed ID: 22164031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultra-wideband tunable resonator based on varactor-loaded complementary split-ring resonators on a substrate-integrated waveguide for microwave sensor applications.
    Sam S; Lim S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):657-60. PubMed ID: 23549526
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity.
    Wang J; Fan C; He J; Ding P; Liang E; Xue Q
    Opt Express; 2013 Jan; 21(2):2236-44. PubMed ID: 23389204
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of two stacked cylindrical dielectric resonators in a TE₁₀₂ microwave cavity for magnetic resonance spectroscopy.
    Mattar SM; Elnaggar SY
    J Magn Reson; 2011 Apr; 209(2):174-82. PubMed ID: 21300559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.