BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 25401893)

  • 1. Effects of gain medium on the plasmonic enhancement of Forster resonance energy transfer in the vicinity of a metallic particle or cavity.
    Chang R; Leung PT; Tsai DP
    Opt Express; 2014 Nov; 22(22):27451-61. PubMed ID: 25401893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states.
    Gonzaga-Galeana JA; Zurita-Sánchez JR
    J Chem Phys; 2013 Dec; 139(24):244302. PubMed ID: 24387365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Nanoantennas Enable Forbidden Förster Dipole-Dipole Energy Transfer and Enhance the FRET Efficiency.
    de Torres J; Mivelle M; Moparthi SB; Rigneault H; Van Hulst NF; García-Parajó MF; Margeat E; Wenger J
    Nano Lett; 2016 Oct; 16(10):6222-6230. PubMed ID: 27623052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-assisted Förster resonance energy transfer at the single-molecule level in the moderate quenching regime.
    Bohlen J; Cuartero-González Á; Pibiri E; Ruhlandt D; Fernández-Domínguez AI; Tinnefeld P; Acuna GP
    Nanoscale; 2019 Apr; 11(16):7674-7681. PubMed ID: 30946424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular fluorescence in the vicinity of a charged metallic nanoparticle.
    Chung HY; Leung PT; Tsai DP
    Opt Express; 2013 Nov; 21(22):26483-92. PubMed ID: 24216869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of a charged neighboring particle on Förster resonance energy transfer (FRET).
    Abeywickrama C; Premaratne M; Gunapala SD; Andrews DL
    J Phys Condens Matter; 2020 Feb; 32(9):095305. PubMed ID: 31722329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Förster Resonance Energy Transfer (FRET) on Single Metal Particle.
    Zhang J; Fu Y; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2007 Jan; 111(1):50-56. PubMed ID: 19079780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of Resonant Energy Transfer Due to an Evanescent Wave from the Metal.
    Poudel A; Chen X; Ratner MA
    J Phys Chem Lett; 2016 Mar; 7(6):955-60. PubMed ID: 26913686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots.
    Sadeghi SM; West RG; Nejat A
    Nanotechnology; 2011 Oct; 22(40):405202. PubMed ID: 21896983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast emission decay with high emission efficiency of quantum dots in plasmonic-dielectric metasubstrates.
    Wing WJ; Sadeghi SM; Gutha RR
    J Phys Condens Matter; 2017 Jul; 29(29):295301. PubMed ID: 28604367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic enhancement of second harmonic generation on metal coated nanoparticles.
    Wunderlich S; Peschel U
    Opt Express; 2013 Aug; 21(16):18611-23. PubMed ID: 23938778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon enhancement mechanism for the upconversion processes in NaYF4:Yb(3+),Er(3+) nanoparticles: Maxwell versus Förster.
    Lu D; Cho SK; Ahn S; Brun L; Summers CJ; Park W
    ACS Nano; 2014 Aug; 8(8):7780-92. PubMed ID: 25003209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective turn-on and modulation of resonant energy transfer in single plasmonic hybrid nanostructures.
    Bujak Ł; Ishii T; Sharma DK; Hirata S; Vacha M
    Nanoscale; 2017 Jan; 9(4):1511-1519. PubMed ID: 28067372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of Förster resonance energy transfer analysis approaches for Nanodrop fluorometry.
    Kelliher MT; Piraino MS; Gemoules ME; Southern CA
    Anal Biochem; 2013 Oct; 441(1):44-50. PubMed ID: 23811157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield.
    Jacob MH; Dsouza RN; Ghosh I; Norouzy A; Schwarzlose T; Nau WM
    J Phys Chem B; 2013 Jan; 117(1):185-98. PubMed ID: 23215358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium.
    Dai D; Shi Y; He S; Wosinski L; Thylen L
    Opt Express; 2011 Jul; 19(14):12925-36. PubMed ID: 21747445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Range and High-Efficiency Plasmon-Assisted Förster Resonance Energy Transfer.
    Hamza AO; Al-Dulaimi A; Bouillard JG; Adawi AM
    J Phys Chem C Nanomater Interfaces; 2023 Nov; 127(44):21611-21616. PubMed ID: 37969925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectric polarization, anisotropy and nonradiative energy transfer into nanometre-scale thin semiconducting films.
    Gordon JM; Gartstein YN
    J Phys Condens Matter; 2013 Oct; 25(42):425302. PubMed ID: 24080742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.