These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 25401893)

  • 21. Active role of oxide layers on the polarization of plasmonic nanostructures.
    D'Agostino S; Della Sala F
    ACS Nano; 2010 Jul; 4(7):4117-25. PubMed ID: 20536221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Förster resonance energy transfer (FRET) and applications thereof.
    Kaur A; Kaur P; Ahuja S
    Anal Methods; 2020 Dec; 12(46):5532-5550. PubMed ID: 33210685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Förster Resonance Energy Transfer and the Local Optical Density of States in Plasmonic Nanogaps.
    Hamza AO; Viscomi FN; Bouillard JG; Adawi AM
    J Phys Chem Lett; 2021 Feb; 12(5):1507-1513. PubMed ID: 33534597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On-line determination of Förster resonance energy transfer efficiency in drying latex films: correlation of interdiffusion and particle deformation.
    Pohl K; Kussmaul B; Adams J; Johannsmann D
    Rev Sci Instrum; 2012 Jun; 83(6):063103. PubMed ID: 22755611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor.
    Cushing SK; Li J; Meng F; Senty TR; Suri S; Zhi M; Li M; Bristow AD; Wu N
    J Am Chem Soc; 2012 Sep; 134(36):15033-41. PubMed ID: 22891916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Förster resonance energy transfer in a nanoscopic system on a dielectric interface.
    Batabyal S; Mondol T; Das K; Pal SK
    Nanotechnology; 2012 Dec; 23(49):495402. PubMed ID: 23150145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape.
    Tabor C; Murali R; Mahmoud M; El-Sayed MA
    J Phys Chem A; 2009 Mar; 113(10):1946-53. PubMed ID: 19090688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Switching off FRET in the hybrid assemblies of diblock copolymer micelles, quantum dots, and dyes by plasmonic nanoparticles.
    Kim KS; Kim JH; Kim H; Laquai F; Arifin E; Lee JK; Yoo SI; Sohn BH
    ACS Nano; 2012 Jun; 6(6):5051-9. PubMed ID: 22621410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phonon-assisted exciton transfer into silicon using nanoemitters: the role of phonons and temperature effects in Förster resonance energy transfer.
    Yeltik A; Guzelturk B; Hernandez-Martinez PL; Govorov AO; Demir HV
    ACS Nano; 2013 Dec; 7(12):10492-501. PubMed ID: 24274734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Förster-type resonant energy transfer influenced by metal nanoparticles.
    Reil F; Hohenester U; Krenn JR; Leitner A
    Nano Lett; 2008 Dec; 8(12):4128-33. PubMed ID: 19367798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmon-enhanced Förster energy transfer between semiconductor quantum dots: multipole effects.
    Su XR; Zhang W; Zhou L; Peng XN; Wang QQ
    Opt Express; 2010 Mar; 18(7):6516-21. PubMed ID: 20389674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Förster resonance energy transfer (FRET) with a donor-acceptor system adsorbed on silver or gold nanoisland films.
    Giorgetti E; Cicchi S; Muniz-Miranda M; Margheri G; Del Rosso T; Giusti A; Rindi A; Ghini G; Sottini S; Marcelli A; Foggi P
    Phys Chem Chem Phys; 2009 Nov; 11(42):9798-803. PubMed ID: 19851559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extensive use of FRET in biological imaging.
    Arai Y; Nagai T
    Microscopy (Oxf); 2013 Aug; 62(4):419-28. PubMed ID: 23797967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beyond Förster resonance energy transfer in biological and nanoscale systems.
    Beljonne D; Curutchet C; Scholes GD; Silbey RJ
    J Phys Chem B; 2009 May; 113(19):6583-99. PubMed ID: 19331333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Förster resonance energy transfer investigations using quantum-dot fluorophores.
    Clapp AR; Medintz IL; Mattoussi H
    Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinguishing Förster Resonance Energy Transfer and solvent-mediated charge-transfer relaxation dynamics in a zinc(II) indicator: a femtosecond time-resolved transient absorption spectroscopic study.
    Sreenath K; Yi C; Knappenberger KL; Zhu L
    Phys Chem Chem Phys; 2014 Mar; 16(11):5088-92. PubMed ID: 24504046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Active metal strip hybrid plasmonic waveguide with low critical material gain.
    Gao L; Tang L; Hu F; Guo R; Wang X; Zhou Z
    Opt Express; 2012 May; 20(10):11487-95. PubMed ID: 22565768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Förster resonance energy transfer beyond 10 nm: exploiting the triplet state kinetics of organic fluorophores.
    Hevekerl H; Spielmann T; Chmyrov A; Widengren J
    J Phys Chem B; 2011 Nov; 115(45):13360-70. PubMed ID: 21928769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.