These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 25402061)
21. 3D reconstruction of high-resolution STED microscope images. Punge A; Rizzoli SO; Jahn R; Wildanger JD; Meyer L; Schönle A; Kastrup L; Hell SW Microsc Res Tech; 2008 Sep; 71(9):644-50. PubMed ID: 18512740 [TBL] [Abstract][Full Text] [Related]
22. 3D resolved two-photon fluorescence microscopy of living cells using a modified confocal laser scanning microscope. König K; Simon U; Halbhuber KJ Cell Mol Biol (Noisy-le-grand); 1996 Dec; 42(8):1181-94. PubMed ID: 8997522 [TBL] [Abstract][Full Text] [Related]
23. Light microscopy with doughnut modes: a concept to detect, characterize, and manipulate individual nanoobjects. Züchner T; Failla AV; Meixner AJ Angew Chem Int Ed Engl; 2011 May; 50(23):5274-93. PubMed ID: 21591027 [TBL] [Abstract][Full Text] [Related]
24. Two-photon microscopy of cells and tissue. Rubart M Circ Res; 2004 Dec; 95(12):1154-66. PubMed ID: 15591237 [TBL] [Abstract][Full Text] [Related]
25. Resonant-scanning dual-color STED microscopy with ultrafast photon counting: A concise guide. Wu Y; Wu X; Toro L; Stefani E Methods; 2015 Oct; 88():48-56. PubMed ID: 26123183 [TBL] [Abstract][Full Text] [Related]
26. Multi-point scanning two-photon excitation microscopy by utilizing a high-peak-power 1042-nm laser. Otomo K; Hibi T; Murata T; Watanabe H; Kawakami R; Nakayama H; Hasebe M; Nemoto T Anal Sci; 2015; 31(4):307-13. PubMed ID: 25864674 [TBL] [Abstract][Full Text] [Related]
27. A line-scanning semi-confocal multi-photon fluorescence microscope with a simultaneous broadband spectral acquisition and its application to the study of the thylakoid membrane of a cyanobacterium Anabaena PCC7120. Kumazaki S; Hasegawa M; Ghoneim M; Shimizu Y; Okamoto K; Nishiyama M; Oh-Oka H; Terazima M J Microsc; 2007 Nov; 228(Pt 2):240-54. PubMed ID: 17970923 [TBL] [Abstract][Full Text] [Related]
28. Wide spectral range confocal microscope based on endlessly single-mode fiber. Hubbard R; Ovchinnikov YB; Hayes J; Richardson DJ; Fu YJ; Lin SD; See P; Sinclair AG Opt Express; 2010 Aug; 18(18):18811-9. PubMed ID: 20940774 [TBL] [Abstract][Full Text] [Related]
29. Tip-enhanced optical spectroscopy. Hartschuh A; Beversluis MR; Bouhelier A; Novotny L Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):807-19. PubMed ID: 15306495 [TBL] [Abstract][Full Text] [Related]
30. Enhanced lateral resolution in continuous wave stimulated emission depletion microscopy using tightly focused annular radially polarized excitation beam. Lim G; Kim WC; Oh S; Lee H; Park NC J Biophotonics; 2019 Sep; 12(9):e201900060. PubMed ID: 31050861 [TBL] [Abstract][Full Text] [Related]
31. Supercritical angle fluorescence for enhanced axial sectioning in STED microscopy. Sivankutty S; Coto Hernández I; Bourg N; Dupuis G; Lévêque-Fort S Methods; 2020 Mar; 174():20-26. PubMed ID: 30946895 [TBL] [Abstract][Full Text] [Related]
33. Improving two-photon excitation microscopy for sharper and faster biological imaging. Otomo K; Ishii H; Nemoto T Biophys Physicobiol; 2023; 20(1):e200009. PubMed ID: 37234851 [TBL] [Abstract][Full Text] [Related]
34. An evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in Xenopus morphogenesis. Periasamy A; Skoglund P; Noakes C; Keller R Microsc Res Tech; 1999 Nov; 47(3):172-81. PubMed ID: 10544332 [TBL] [Abstract][Full Text] [Related]
35. Frequency dependent detection in a STED microscope using modulated excitation light. Ronzitti E; Harke B; Diaspro A Opt Express; 2013 Jan; 21(1):210-9. PubMed ID: 23388913 [TBL] [Abstract][Full Text] [Related]
36. Continuous-Wave Stimulated Emission Depletion Microscope for Imaging Actin Cytoskeleton in Fixed and Live Cells. Neupane B; Jin T; Mellor LF; Loboa EG; Ligler FS; Wang G Sensors (Basel); 2015 Sep; 15(9):24178-90. PubMed ID: 26393614 [TBL] [Abstract][Full Text] [Related]