These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 25402086)

  • 1. Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity.
    Ma TX; Zou K; Wang YS; Zhang C; Su XX
    Opt Express; 2014 Nov; 22(23):28443-51. PubMed ID: 25402086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acousto-optic coupling in phoxonic crystal nanobeam cavities with plasmonic behavior.
    Hsu JC; Lu TY; Lin TR
    Opt Express; 2015 Oct; 23(20):25814-26. PubMed ID: 26480095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs.
    Laude V; Beugnot JC; Benchabane S; Pennec Y; Djafari-Rouhani B; Papanikolaou N; Escalante JM; Martinez A
    Opt Express; 2011 May; 19(10):9690-8. PubMed ID: 21643226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phoxonic crystals--a new platform for chemical and biochemical sensors.
    Lucklum R; Zubtsov M; Oseev A
    Anal Bioanal Chem; 2013 Aug; 405(20):6497-509. PubMed ID: 23756594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of optomechanical coupling in a phoxonic crystal cavity in diamond.
    Kipfstuhl L; Guldner F; Riedrich-Möller J; Becher C
    Opt Express; 2014 May; 22(10):12410-23. PubMed ID: 24921359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance phoxonic cavity designs for enhanced acousto-optical interaction.
    Aly AH; Shaban SM; Mehaney A
    Appl Opt; 2021 Apr; 60(11):3224-3231. PubMed ID: 33983223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breakdown of the linear acousto-optic interaction regime in phoxonic cavities.
    Almpanis E; Papanikolaou N; Stefanou N
    Opt Express; 2014 Dec; 22(26):31595-607. PubMed ID: 25607131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optomechanical interactions in two-dimensional Si and GaAs phoXonic cavities.
    El-Jallal S; Oudich M; Pennec Y; Djafari-Rouhani B; Makhoute A; Rolland Q; Dupont S; Gazalet J
    J Phys Condens Matter; 2014 Jan; 26(1):015005. PubMed ID: 24275077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of acousto-optic interaction using a phoxonic cavity with structural hierarchy.
    An J; Park S; Jeon W
    Sci Rep; 2024 Apr; 14(1):8764. PubMed ID: 38627445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of phoxonic virtual waveguides for both electromagnetic and elastic waves based on the self-collimation effect: an application to enhance acousto-optic interaction.
    Shu Y; Yu M; Yu T; Liu W; Wang T; Liao Q
    Opt Express; 2020 Aug; 28(17):24813-24819. PubMed ID: 32907013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-efficiency acousto-optic coupling in phoxonic resonator based on silicon fishbone nanobeam cavity.
    Chiu CC; Chen WM; Sung KW; Hsiao FL
    Opt Express; 2017 Mar; 25(6):6076-6091. PubMed ID: 28380963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits.
    Balram KC; Davanço MI; Song JD; Srinivasan K
    Nat Photonics; 2016 May; 10(5):346-352. PubMed ID: 27446234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A one-dimensional optomechanical crystal with a complete phononic band gap.
    Gomis-Bresco J; Navarro-Urrios D; Oudich M; El-Jallal S; Griol A; Puerto D; Chavez E; Pennec Y; Djafari-Rouhani B; Alzina F; Martínez A; Torres CM
    Nat Commun; 2014 Jul; 5():4452. PubMed ID: 25043827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear surface waves in phononic crystals.
    Kutsenko AA; Shuvalov AL
    J Acoust Soc Am; 2013 Feb; 133(2):653-60. PubMed ID: 23363085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.
    Merkel A; Tournat V; Gusev V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023206. PubMed ID: 25215842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization of Acoustic Waves in Two-Dimensional Phononic Crystals Based on Fused Silica.
    Marunin MV; Polikarpova NV
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phoxonic Hybrid Superlattice.
    Alonso-Redondo E; Huesmann H; El Boudouti el-H; Tremel W; Djafari-Rouhani B; Butt HJ; Fytas G
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12488-95. PubMed ID: 25855860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of acousto-optic interaction based on forward stimulated Brillouin scattering in hybrid phononic-photonic waveguides.
    Zhang R; Chen G; Sun J
    Opt Express; 2016 Jun; 24(12):13051-9. PubMed ID: 27410324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves.
    Lin TR; Lin CH; Hsu JC
    Sci Rep; 2015 Sep; 5():13782. PubMed ID: 26346448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional multi-channel acousto-optic diffraction.
    Zhao L; Zhao Q; Zhou J; Tian S; Zhang H
    Ultrasonics; 2010 Apr; 50(4-5):512-6. PubMed ID: 20080278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.