These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25402089)

  • 1. Spin canting induced nonreciprocal Goos-Hänchen shifts.
    Macêdo R; Stamps RL; Dumelow T
    Opt Express; 2014 Nov; 22(23):28467-78. PubMed ID: 25402089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration.
    Li CF; Wang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):055601. PubMed ID: 15244873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial coherence and optical beam shifts.
    Löffler W; Aiello A; Woerdman JP
    Phys Rev Lett; 2012 Nov; 109(21):213901. PubMed ID: 23215594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation-dependent beam profile distortion associated with the Goos-Hanchen shift.
    Wan Y; Zheng Z; Zhu J
    Opt Express; 2009 Nov; 17(23):21313-9. PubMed ID: 19997370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum-well enhancement of the Goos-Hänchen shift for p-polarized beams in a two-prism configuration.
    Broe J; Keller O
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jun; 19(6):1212-22. PubMed ID: 12049360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Goos-Hänchen shifts of partially coherent light fields.
    Wang LG; Zhu SY; Zubairy MS
    Phys Rev Lett; 2013 Nov; 111(22):223901. PubMed ID: 24329448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonreciprocal Goos-Hänchen shift by topological edge states of a magnetic photonic crystal.
    Ma H; Ju C; Xi X; Wu RX
    Opt Express; 2020 Jul; 28(14):19916-19925. PubMed ID: 32680061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of Goos-Hänchen shift due to a Rydberg state.
    Asadpour SH; Hamedi HR; Jafari M
    Appl Opt; 2018 May; 57(15):4013-4019. PubMed ID: 29791374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frustrated total reflection: the double-prism revisited.
    Haibel A; Nimtz G; Stahlhofen AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):047601. PubMed ID: 11308988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic control of Goos-Hänchen shifts in a yttrium-iron-garnet film.
    Yu W; Sun H; Gao L
    Sci Rep; 2017 Mar; 7():45866. PubMed ID: 28361936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-assisted resonant transmission and enhanced Goos-Hänchen shift in a frustrated total internal reflection configuration.
    Chen Y; Ban Y; Zhu QB; Chen X
    Opt Lett; 2016 Oct; 41(19):4468-4471. PubMed ID: 27749857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of the Goos-Hänchen shifts of a probe light beam using phase tunability of the intracavity medium.
    Radmehr A; Sahrai M; Sattari H
    Appl Opt; 2016 Mar; 55(8):1946-52. PubMed ID: 26974787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opposite Goos-Hänchen shifts for transverse-electric and transverse-magnetic beams at the interface associated with single-negative materials.
    Hu X; Huang Y; Zhang W; Qing DK; Peng J
    Opt Lett; 2005 Apr; 30(8):899-901. PubMed ID: 15865392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced normal-incidence Goos-Hänchen effects induced by magnetic surface plasmons in magneto-optical metamaterials.
    Yu WJ; Sun H; Gao L
    Opt Express; 2018 Feb; 26(4):3956-3973. PubMed ID: 29475253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Goos-Hänchen shifts due to spin-orbit coupling in the carbon nanotube quantum dot nanostructures.
    Asadpour SH
    Appl Opt; 2017 Mar; 56(8):2201-2208. PubMed ID: 28375303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Goos-Hänchen shifts at the interfaces between left- and right-handed media.
    Qing DK; Chen G
    Opt Lett; 2004 Apr; 29(8):872-4. PubMed ID: 15119406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts.
    Aiello A; Woerdman JP
    Opt Lett; 2008 Jul; 33(13):1437-9. PubMed ID: 18594657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Goos-Hänchen and Imbert-Fedorov shifts at gradient metasurfaces.
    Kong Q; Shi HY; Shi JL; Chen X
    Opt Express; 2019 Apr; 27(9):11902-11913. PubMed ID: 31052739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of the lateral displacement of random fields at interfaces.
    Castrillón-Gómez JD; de la Cruz S; Méndez ER; Escamilla HM
    J Opt Soc Am A Opt Image Sci Vis; 2022 Dec; 39(12):C29-C35. PubMed ID: 36520720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beam propagation management in a fractional Schrödinger equation.
    Huang C; Dong L
    Sci Rep; 2017 Jul; 7(1):5442. PubMed ID: 28710388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.