These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25402101)

  • 1. Mechanism of the metallic metamaterials coupled to the gain material.
    Huang Z; Droulias S; Koschny T; Soukoulis CM
    Opt Express; 2014 Nov; 22(23):28596-605. PubMed ID: 25402101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium.
    Huang Z; Koschny T; Soukoulis CM
    Phys Rev Lett; 2012 May; 108(18):187402. PubMed ID: 22681118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs.
    Yue W; Wang Z; Whittaker J; Schedin F; Wu Z; Han J
    Nanotechnology; 2016 Feb; 27(5):055303. PubMed ID: 26751676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gain and plasmon dynamics in active negative-index metamaterials.
    Wuestner S; Pusch A; Tsakmakidis KL; Hamm JM; Hess O
    Philos Trans A Math Phys Eng Sci; 2011 Sep; 369(1950):3525-50. PubMed ID: 21807726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromagnetic dipole coupling mechanism in layered terahertz metamaterials.
    Choi J; Jung H; Lee H; Choi H
    Opt Express; 2013 Jul; 21(14):16975-9. PubMed ID: 23938546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared cloaking based on the electric response of split ring resonators.
    Kanté B; de Lustrac A; Lourtioz JM; Burokur SN
    Opt Express; 2008 Jun; 16(12):9191-8. PubMed ID: 18545631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering resonances in infrared metamaterials.
    Kanté B; de Lustrac A; Lourtioz JM; Gadot F
    Opt Express; 2008 May; 16(10):6774-84. PubMed ID: 18545380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss compensation in metamaterials through embedding of active transistor based negative differential resistance circuits.
    Xu W; Padilla WJ; Sonkusale S
    Opt Express; 2012 Sep; 20(20):22406-11. PubMed ID: 23037389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene.
    Weis P; Garcia-Pomar JL; Rahm M
    Opt Express; 2014 Apr; 22(7):8473-89. PubMed ID: 24718220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normal-incidence left-handed metamaterials based on symmetrically connected split-ring resonators.
    Wang J; Qu S; Xu Z; Ma H; Xia S; Yang Y; Wu X; Wang Q; Chen C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036601. PubMed ID: 20365890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays.
    Sersic I; Frimmer M; Verhagen E; Koenderink AF
    Phys Rev Lett; 2009 Nov; 103(21):213902. PubMed ID: 20366039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast nonlinear optical spectroscopy of a dual-band negative index metamaterial all-optical switching device.
    Dani KM; Ku Z; Upadhya PC; Prasankumar RP; Taylor AJ; Brueck SR
    Opt Express; 2011 Feb; 19(5):3973-83. PubMed ID: 21369223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of plasmonic toroidal metamaterials at optical frequencies.
    Huang YW; Chen WT; Wu PC; Fedotov V; Savinov V; Ho YZ; Chau YF; Zheludev NI; Tsai DP
    Opt Express; 2012 Jan; 20(2):1760-8. PubMed ID: 22274519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Strong Coupling Effect between Metallic Split-Ring Resonators and Molecular Vibrations in Polymethyl Methacrylate.
    Liu Y; Maqbool E; Han Z
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Symmetry breaking and strong coupling in planar optical metamaterials.
    Aydin K; Pryce IM; Atwater HA
    Opt Express; 2010 Jun; 18(13):13407-17. PubMed ID: 20588471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulating Fundamental Resonance in Capacitive Coupled Asymmetric Terahertz Metamaterials.
    Rao SJM; Srivastava YK; Kumar G; Roy Chowdhury D
    Sci Rep; 2018 Nov; 8(1):16773. PubMed ID: 30425280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-gap individual and coupled split-ring resonator structures.
    Penciu RS; Aydin K; Kafesaki M; Koschny T; Ozbay E; Economou EN; Soukoulis CM
    Opt Express; 2008 Oct; 16(22):18131-44. PubMed ID: 18958091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong coupling between nanoscale metamaterials and phonons.
    Shelton DJ; Brener I; Ginn JC; Sinclair MB; Peters DW; Coffey KR; Boreman GD
    Nano Lett; 2011 May; 11(5):2104-8. PubMed ID: 21462937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs).
    Lahiri B; McMeekin SG; De la Rue RM; Johnson NP
    Opt Express; 2013 Apr; 21(8):9343-52. PubMed ID: 23609645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband terahertz circular polarizers with single- and double-helical array metamaterials.
    Li S; Yang Z; Wang J; Zhao M
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jan; 28(1):19-23. PubMed ID: 21200407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.