These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25402134)

  • 1. Fano resonance of self-collimated beams in two-dimensional photonic crystals.
    Lee SG; Park JM; Kee CS
    Opt Express; 2014 Nov; 22(23):28954-65. PubMed ID: 25402134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulating acoustic Fano resonance of self-collimated sound beams in two dimensional sonic crystals.
    Zhang T; Gao S; Cheng Y; Liu X
    Ultrasonics; 2019 Jan; 91():129-133. PubMed ID: 30107288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient beaming of self-collimated light from photonic crystals.
    Park JM; Lee SG; Park HY; Kim JE
    Opt Express; 2008 Dec; 16(25):20354-67. PubMed ID: 19065173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ring-type Fabry-Pérot filter based on the self-collimation effect in a 2D photonic crystal.
    Kim TT; Lee SG; Kim SH; Kim JE; Park HY; Kee CS
    Opt Express; 2010 Aug; 18(16):17106-13. PubMed ID: 20721099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonant transmission of self-collimated beams through coupled zigzag-box resonators: slow self-collimated beams in a photonic crystal.
    Lee SG; Kim SH; Kim TT; Kim JE; Park HY; Kee CS
    Opt Express; 2012 Apr; 20(8):8309-16. PubMed ID: 22513542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grating-induced omnidirectional refraction of self-collimated beams at a photonic crystal surface.
    Lee SG; Kee CS
    Appl Opt; 2013 May; 52(14):3229-33. PubMed ID: 23669834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals.
    Zhang Y; Zhang Y; Li B
    Opt Express; 2007 Jul; 15(15):9287-92. PubMed ID: 19547271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-accelerating beams in photonic crystals.
    Kaminer I; Nemirovsky J; Makris KG; Segev M
    Opt Express; 2013 Apr; 21(7):8886-96. PubMed ID: 23571979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs.
    Babić Lj; de Dood MJ
    Opt Express; 2010 Dec; 18(25):26569-82. PubMed ID: 21165007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally tunable ultracompact Fano resonator on a silicon photonic chip.
    Zhang W; Yao J
    Opt Lett; 2018 Nov; 43(21):5415-5418. PubMed ID: 30383021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities.
    Nozaki K; Shinya A; Matsuo S; Sato T; Kuramochi E; Notomi M
    Opt Express; 2013 May; 21(10):11877-88. PubMed ID: 23736410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized Fano lineshapes reveal exceptional points in photonic molecules.
    Caselli N; Intonti F; La China F; Biccari F; Riboli F; Gerardino A; Li L; Linfield EH; Pagliano F; Fiore A; Gurioli M
    Nat Commun; 2018 Jan; 9(1):396. PubMed ID: 29374174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides.
    Matsuda N; Takesue H; Shimizu K; Tokura Y; Kuramochi E; Notomi M
    Opt Express; 2013 Apr; 21(7):8596-604. PubMed ID: 23571949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Fano resonance of an individual semiconductor nanostructure.
    Fan P; Yu Z; Fan S; Brongersma ML
    Nat Mater; 2014 May; 13(5):471-5. PubMed ID: 24747781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.
    Matsuda N; Kato T; Harada K; Takesue H; Kuramochi E; Taniyama H; Notomi M
    Opt Express; 2011 Oct; 19(21):19861-74. PubMed ID: 21996994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible Fano resonance by transition from fast light to slow light in a coupled-resonator-induced transparency structure.
    Zhang Y; Zhang X; Wang Y; Zhu R; Gai Y; Liu X; Yuan P
    Opt Express; 2013 Apr; 21(7):8570-86. PubMed ID: 23571947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable Fano resonance in a single-ring-resonator-based add/drop interferometer.
    Wang K; Liu X; Yu C; Zhang Y
    Appl Opt; 2013 Jul; 52(20):4884-9. PubMed ID: 23852203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fano resonance based on D-shaped waveguide structure and its application for human hemoglobin detection.
    Liu X; Li J; Chen J; Rohimah S; Tian H; Wang J
    Appl Opt; 2020 Jul; 59(21):6424-6430. PubMed ID: 32749309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators.
    McGarvey-Lechable K; Bianucci P
    Opt Express; 2014 Oct; 22(21):26032-41. PubMed ID: 25401637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of valley-dependent beams in photonic graphene.
    Deng F; Sun Y; Wang X; Xue R; Li Y; Jiang H; Shi Y; Chang K; Chen H
    Opt Express; 2014 Sep; 22(19):23605-13. PubMed ID: 25321826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.