These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. On the mechanism of the palladium bis(NHC) complex catalyzed CH functionalization of propane: experiment and DFT calculations. Munz D; Strassner T Chemistry; 2014 Nov; 20(45):14872-9. PubMed ID: 25251747 [TBL] [Abstract][Full Text] [Related]
4. Pincer-type Heck catalysts and mechanisms based on Pd(IV) intermediates: a computational study. Blacque O; Frech CM Chemistry; 2010 Feb; 16(5):1521-31. PubMed ID: 20024984 [TBL] [Abstract][Full Text] [Related]
5. Bis-N-heterocyclic carbene (NHC) stabilized η6-arene iron(0) complexes: synthesis, structure, reactivity, and catalytic activity. Blom B; Tan G; Enthaler S; Inoue S; Epping JD; Driess M J Am Chem Soc; 2013 Dec; 135(48):18108-20. PubMed ID: 24195449 [TBL] [Abstract][Full Text] [Related]
6. Rational design of model Pd(ii)-catalysts for C-H activation involving ligands with charge-shift bonding characteristics. Ma D; Zhang C; Chen ZN; Xu X Phys Chem Chem Phys; 2017 Jan; 19(3):2417-2424. PubMed ID: 28058426 [TBL] [Abstract][Full Text] [Related]
7. Nitron-derivative-based palladium carbene complexes: structural characterization, theoretical calculations, and catalytic applications in the Mizoroki-Heck coupling reaction. Lee MY; Liao CH; Hung HY; Lee JY; Lee HM RSC Adv; 2023 Sep; 13(39):27434-27445. PubMed ID: 37711375 [TBL] [Abstract][Full Text] [Related]
8. Heterogeneous versus homogeneous palladium catalysts for ligandless mizoroki-heck reactions: a comparison of batch/microwave and continuous-flow processing. Glasnov TN; Findenig S; Kappe CO Chemistry; 2009; 15(4):1001-10. PubMed ID: 19086042 [TBL] [Abstract][Full Text] [Related]
9. Theoretical analysis of the mechanism of palladium(II) acetate-catalyzed oxidative Heck coupling of electron-deficient arenes with alkenes: effects of the pyridine-type ancillary ligand and origins of the meta-regioselectivity. Zhang S; Shi L; Ding Y J Am Chem Soc; 2011 Dec; 133(50):20218-29. PubMed ID: 22112165 [TBL] [Abstract][Full Text] [Related]
10. Understanding Anionic "Ligandless" Palladium Species in the Mizoroki-Heck Reaction. Schroeter F; Strassner T Inorg Chem; 2018 May; 57(9):5159-5173. PubMed ID: 29671325 [TBL] [Abstract][Full Text] [Related]
12. A DFT comparison of the neutral and cationic Heck pathways. Bäcktorp C; Norrby PO Dalton Trans; 2011 Nov; 40(42):11308-14. PubMed ID: 21738934 [TBL] [Abstract][Full Text] [Related]
13. Conjugate addition vs Heck reaction: a theoretical study on competitive coupling catalyzed by isoelectronic metal (Pd(II) and Rh(I)). Peng Q; Yan H; Zhang X; Wu YD J Org Chem; 2012 Sep; 77(17):7487-96. PubMed ID: 22876853 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms in the reaction of palladium(II)-pi-allyl complexes with aryl halides: evidence for NHC exchange between two palladium complexes. Normand AT; Nechaev MS; Cavell KJ Chemistry; 2009 Jul; 15(29):7063-73. PubMed ID: 19575424 [TBL] [Abstract][Full Text] [Related]
16. Mizoroki-Heck coupling using immobilized molecular precatalysts: leaching active species from Pd pincers, entrapped Pd salts, and Pd NHC complexes. Weck M; Jones CW Inorg Chem; 2007 Mar; 46(6):1865-75. PubMed ID: 17348717 [TBL] [Abstract][Full Text] [Related]
17. Comparative experimental and EXAFS studies in the Mizoroki-Heck reaction with heteroatom-functionalised N-heterocyclic carbene palladium catalysts. Fiddy SG; Evans J; Neisius T; Newton MA; Tsoureas N; Tulloch AA; Danopoulos AA Chemistry; 2007; 13(13):3652-9. PubMed ID: 17304612 [TBL] [Abstract][Full Text] [Related]
18. Activity of rhodium-catalyzed hydroformylation: added insight and predictions from theory. Sparta M; Børve KJ; Jensen VR J Am Chem Soc; 2007 Jul; 129(27):8487-99. PubMed ID: 17555314 [TBL] [Abstract][Full Text] [Related]
19. N Metz S Inorg Chem; 2017 Apr; 56(7):3820-3833. PubMed ID: 28291346 [TBL] [Abstract][Full Text] [Related]
20. Can Contemporary Density Functional Theory Predict Energy Spans in Molecular Catalysis Accurately Enough To Be Applicable for in Silico Catalyst Design? A Computational/Experimental Case Study for the Ruthenium-Catalyzed Hydrogenation of Olefins. Rohmann K; Hölscher M; Leitner W J Am Chem Soc; 2016 Jan; 138(1):433-43. PubMed ID: 26713773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]